算术运算¶
$$
\begin{array}{ll}
a b+a c=a(b+c) & a\left(\frac{b}{c}\right)=\frac{a b}{c} \\
\frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b c} & \frac{a}{\left(\frac{b}{c}\right)}=\frac{a c}{b} \\
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b}{b d} \\
\frac{a-b}{c-d}=\frac{b-a}{d-c} & \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \\
\frac{a b+a c}{a}=b+c, a \neq 0 & \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c}
\end{array}
$$
指数性质¶
$$
\begin{array}{ll}
a^{n} a^{m}=a^{n+m} & \frac{a^{n}}{a^{m}}=a^{n-m}=\frac{1}{a^{m-n}} \\
\left(a^{n}\right)^{m}=a^{n m} & a^{0}=1, \quad a \neq 0 \\
(a b)^{n}=a^{n} b^{n} & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
a^{-n}=\frac{1}{a^{n}} & \frac{1}{a^{-n}}=a^{n} \\
\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} & a^{\frac{n}{m}}=\left(a^{\frac{1}{m}}\right)^{n}=\left(a^{n}\right)^{\frac{1}{m}}
\end{array}
$$
根式性质¶
$$
\begin{aligned}
&\sqrt[n]{a}=a^{\frac{1}{n}} \quad \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \\
&\sqrt[m]{\sqrt[n]{a}}=\sqrt[n m]{a} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\
&\sqrt[n]{a^{n}}=a, \text { if } n \text { is odd } \\
&\sqrt[n]{a^{n}}=|a|, \text { if } n \text { is even }
\end{aligned}
$$
不等式性质¶
- 如果 $a<b$ then $a+c<b+c$ 那么 $a-c<b-c$
- 如果 $a<b$ 且 $c>0$ 那么 $a c<b c$ 且 $\frac{a}{c}<\frac{b}{c}$
- 如果 $a<b$ 且 $c<0$ 那么 $a c>b c$ 且 $\frac{a}{c}>\frac{b}{c}$
绝对值性质¶
- $|a|= \begin{cases}a & \text { if } a \geq 0 \\ -a & \text { if } a<0\end{cases}$
- $|a| \geq 0 \quad|-a|=|a|$
- $|a b|=|a||b| \quad\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
- $|a+b| \leq|a|+|b| \quad$ 三角不等式(Triangle Inequality)
如果 $P_{1}=\left(x_{1}, y_{1}\right)$ , $P_{2}=\left(x_{2}, y_{2}\right)$是两个点,那么两点间的距离为
$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$
复数性质¶
$$
\begin{aligned}
&i=\sqrt{-1} \quad i^{2}=-1 \quad \sqrt{-a}=i \sqrt{a}, \quad a \geq 0 \\
&(a+b i)+(c+d i)=a+c+(b+d) i \\
&(a+b i)-(c+d i)=a-c+(b-d) i \\
&(a+b i)(c+d i)=a c-b d+(a d+b c) i \\
&(a+b i)(a-b i)=a^{2}+b^{2} \\
&|a+b i|=\sqrt{a^{2}+b^{2}} \quad \text { Complex Modulus } \\
&\frac{(a+b i)}{(a+b i)}(a+b i)=|a+b i|^{2}
\end{aligned}
$$
对数性质¶
- $y=\log _{b} x$ is equivalent to $x=b^{y} \quad \log _{b} b=1 \quad \log _{b} 1=0$
- $\begin{array}{lll}\text { Special Logarithms } & \log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y \\ \ln x=\log _{e} x & \text { 自然对数} \log & \\ \log x=\log _{10} x & \text { 常用对数 } \log \end{array}$
其中 $e=2.718281828 \ldots$
定义域 $\log _{b} x$ is $x>0$
因式分解¶
\begin{aligned}
&x^{2}-a^{2}=(x+a)(x-a) \\
&x^{2}+2 a x+a^{2}=(x+a)^{2} \\
&x^{2}-2 a x+a^{2}=(x-a)^{2} \\
&x^{2}+(a+b) x+a b=(x+a)(x+b) \\
&x^{3}+3 a x^{2}+3 a^{2} x+a^{3}=(x+a)^{3} \\
&x^{3}-3 a x^{2}+3 a^{2} x-a^{3}=(x-a)^{3} \\
&x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right) \\
&x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right) \\
&x^{2 n}-a^{2 n}=\left(x^{n}-a^{n}\right)\left(x^{n}+a^{n}\right) \\
&\text { If } n \text { is odd then, } \\
&x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-1}\right) \\
&x^{n}+a^{n} \\
&=(x+a)\left(x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\cdots+a^{n-1}\right)
\end{aligned}
求根公式¶
解 $a x^{2}+b x+c=0, a \neq 0$
$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$
If $b^{2}-4 a c>0$ - 两个不同的根
If $b^{2}-4 a c=0$ - 两个相同的根
If $b^{2}-4 a c<0$ - 两个复数根