算术运算

$$ \begin{array}{ll} a b+a c=a(b+c) & a\left(\frac{b}{c}\right)=\frac{a b}{c} \\ \frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b c} & \frac{a}{\left(\frac{b}{c}\right)}=\frac{a c}{b} \\ \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b}{b d} \\ \frac{a-b}{c-d}=\frac{b-a}{d-c} & \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \\ \frac{a b+a c}{a}=b+c, a \neq 0 & \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c} \end{array} $$

指数性质

$$ \begin{array}{ll} a^{n} a^{m}=a^{n+m} & \frac{a^{n}}{a^{m}}=a^{n-m}=\frac{1}{a^{m-n}} \\ \left(a^{n}\right)^{m}=a^{n m} & a^{0}=1, \quad a \neq 0 \\ (a b)^{n}=a^{n} b^{n} & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\ a^{-n}=\frac{1}{a^{n}} & \frac{1}{a^{-n}}=a^{n} \\ \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} & a^{\frac{n}{m}}=\left(a^{\frac{1}{m}}\right)^{n}=\left(a^{n}\right)^{\frac{1}{m}} \end{array} $$

根式性质

$$ \begin{aligned} &\sqrt[n]{a}=a^{\frac{1}{n}} \quad \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \\ &\sqrt[m]{\sqrt[n]{a}}=\sqrt[n m]{a} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ &\sqrt[n]{a^{n}}=a, \text { if } n \text { is odd } \\ &\sqrt[n]{a^{n}}=|a|, \text { if } n \text { is even } \end{aligned} $$

不等式性质

绝对值性质

距离

如果 $P_{1}=\left(x_{1}, y_{1}\right)$ , $P_{2}=\left(x_{2}, y_{2}\right)$是两个点,那么两点间的距离为 $$ d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} $$

复数性质

$$ \begin{aligned} &i=\sqrt{-1} \quad i^{2}=-1 \quad \sqrt{-a}=i \sqrt{a}, \quad a \geq 0 \\ &(a+b i)+(c+d i)=a+c+(b+d) i \\ &(a+b i)-(c+d i)=a-c+(b-d) i \\ &(a+b i)(c+d i)=a c-b d+(a d+b c) i \\ &(a+b i)(a-b i)=a^{2}+b^{2} \\ &|a+b i|=\sqrt{a^{2}+b^{2}} \quad \text { Complex Modulus } \\ &\frac{(a+b i)}{(a+b i)}(a+b i)=|a+b i|^{2} \end{aligned} $$

对数性质

因式分解

\begin{aligned} &x^{2}-a^{2}=(x+a)(x-a) \\ &x^{2}+2 a x+a^{2}=(x+a)^{2} \\ &x^{2}-2 a x+a^{2}=(x-a)^{2} \\ &x^{2}+(a+b) x+a b=(x+a)(x+b) \\ &x^{3}+3 a x^{2}+3 a^{2} x+a^{3}=(x+a)^{3} \\ &x^{3}-3 a x^{2}+3 a^{2} x-a^{3}=(x-a)^{3} \\ &x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right) \\ &x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right) \\ &x^{2 n}-a^{2 n}=\left(x^{n}-a^{n}\right)\left(x^{n}+a^{n}\right) \\ &\text { If } n \text { is odd then, } \\ &x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+\cdots+a^{n-1}\right) \\ &x^{n}+a^{n} \\ &=(x+a)\left(x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\cdots+a^{n-1}\right) \end{aligned}

求根公式

解 $a x^{2}+b x+c=0, a \neq 0$ $$ x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} $$ If $b^{2}-4 a c>0$ - 两个不同的根 If $b^{2}-4 a c=0$ - 两个相同的根 If $b^{2}-4 a c<0$ - 两个复数根