VIP Refresher: Calculus

Shervine Amidi

May 30, 2018

Integral calculus

\square Primitive function - The primitive function of a function f, noted F and also known as an antiderivative, is a differentiable function such that:

$$
F^{\prime}=f
$$

\square Integral - Given a function f and an interval $[a, b]$, the integral of f over $[a, b]$, noted $\int_{a}^{b} f(x) d x$, is the signed area of the region in the $x y$-plane that is bounded by the graph of f, the x-axis and the vertical lines $x=a$ and $x=b$, and can be computed with the primitive of f as follows:

$$
f(x) d x=F(b)-F(a)
$$

\square Integration by parts - Given two functions f, g on the interval $[a, b]$, we can integrate by parts the quantity $\int_{a}^{b} f(x) g^{\prime}(x) d x$ as follows:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

\square Rational primitive functions - The table below sums up the main rational functions associated to their primitives. We will omit the additive constant C associated to all those primitives.

Function f	Primitive F
a	$a x$
x^{a}	$\frac{x^{a+1}}{a+1}$
$\frac{1}{x}$	$\ln \|x\|$
$\frac{1}{1+x^{2}}$	$\arctan (x)$
$\frac{1}{1-x^{2}}$	$\frac{1}{2} \ln \left\|\frac{x+1}{x-1}\right\|$

\square Irrational primitive functions - The table below sums up the main rational functions associated to their primitives. We will omit the additive constant C associated to all those primitives:

Function f	Primitive F
$\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin (x)$
$-\frac{1}{\sqrt{1-x^{2}}}$	$\arccos (x)$
$\frac{x}{\sqrt{x^{2}-1}}$	$\sqrt{x^{2}-1}$

\square Exponential primitive functions - The table below sums up the main exponential functions associated to their primitives. We will omit the additive constant C associated to all those primitives.

Function f	Primitive F
$\ln (x)$	$x \ln (x)-x$
$\exp (x)$	$\exp (x)$

\square Trigonometric primitive functions - The table below sums up the main trigonometric functions associated to their primitives. We will omit the additive constant C associated to all those primitives

Function f	Primitive F
$\cos (x)$	$\sin (x)$
$\sin (x)$	$-\cos (x)$
$\tan (x)$	$-\ln \|\cos (x)\|$
$\frac{1}{\cos (x)}$	$\ln \left\|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right\|$
$\frac{1}{\sin (x)}$	$\ln \left\|\tan \left(\frac{x}{2}\right)\right\|$
$\frac{1}{\tan (x)}$	$\ln \|\sin (x)\|$

Laplace transforms

\square Definition - The Laplace transform of a given function f defined for all $t \geqslant 0$ is noted $\mathscr{L}(f)$ and is defined as:

$$
\mathscr{L}(f)=F(s)=\int_{0}^{+\infty} e^{-s t} f(t) d t
$$

Remark: we note that $f(t)=\mathscr{L}^{-1}(F)$ where \mathscr{L}^{-1} is the inverse Laplace transform.
\square Main properties - The table below sums up the main properties of the Laplace transform:

	Property	t-domain	s-domain
	Linearity	$\alpha f(t)+\beta g(t)$	$\alpha F(s)+\beta G(s)$
	Integral	$\int_{0}^{t} f(\tau) d \tau$	$\frac{F(s)}{s}$
	First derivative	$f^{\prime}(t)$	$s F(s)-f(0)$
	Second derivative	$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
	$n^{\text {th }}$ derivative	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0)$
発	Integral	$\frac{f(t)}{t}$	$\int_{s}^{+\infty} F(\sigma) d \sigma$
	First derivative	$t f(t)$	$-F^{\prime}(s)$
	Second derivative	$t^{2} f(t)$	$F^{\prime \prime}(s)$
	$n^{\text {th }}$ derivative	$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$

\square Common transform pairs - The table below sums up the most common Laplace transform pairs:

t-domain	s-domain
a	$\frac{a}{s}$
t	$\frac{1}{s^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$

\square Main operations - The table below sums up the main operations of the Laplace transform:

