VIP Refresher: Trigonometry

Shervine AMIDI

May 28, 2018

Definitions

 \square Trigonometric functions – The following common trigonometric functions are 2π -periodic and are defined as follows:

Function	Domain and Image	Definition	Derivative	
$\begin{array}{c} \text{Cosine} \\ \cos(\theta) \end{array}$	$\theta \in \mathbb{R}$ $\cos(\theta) \in [-1,1]$	$\frac{\text{adjacent}}{\text{hypotenuse}}$	$-\sin(heta)$	
Sine $\sin(\theta)$	$\theta \in \mathbb{R}$ $\sin(\theta) \in [-1,1]$	opposite hypotenuse	$\cos(heta)$	
Tangent $\tan(\theta)$	$\theta \in \mathbb{R} \setminus \{2k\pi\} \\ \tan(\theta) \in] -\infty, +\infty[$	$\frac{\sin(\theta)}{\cos(\theta)} = \frac{\text{opposite}}{\text{adjacent}}$	$1 + \tan^2(\theta)$	

C Euler's formula – The following formula establishes a fundamental relationship between the trigonometric functions and the complex exponential function as follows:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Therefore, we have:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{and} \quad \overline{\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}} \quad \text{and} \quad \tan(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})}$$

 \square Inverse trigonometric functions – The common inverse trigonometric functions are defined as follows:

Function	Domain and Image	Definition	Derivative
$\frac{\text{Arccosine}}{\arccos(x)}$	$x \in [-1,1]$ $\arccos(x) \in [0,\pi]$	$\cos(\arccos(x)) = x$	$-\frac{1}{\sqrt{1-x^2}}$
$\begin{array}{c} \text{Arcsine} \\ \arccos(x) \end{array}$	$x \in [-1,1]$ $\arcsin(x) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$	$\sin(\arcsin(x)) = x$	$\frac{1}{\sqrt{1-x^2}}$
$\begin{array}{c} \text{Arctangent} \\ \arctan(x) \end{array}$	$x \in]-\infty, +\infty[$ $\arctan(x) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$	$\tan(\arctan(x)) = x$	$\frac{1}{1+x^2}$

Trigonometric identities

 \square Pythagorean identity – The following identity is commonly used:

 $\forall \theta, \quad \cos^2(\theta) + \sin^2(\theta) = 1$

□ Inverse trigonometric identities – The following identities are commonly used:

$$\forall x, \quad \arctan(x) + \arcsin(x) = \frac{\pi}{2}$$
$$\forall x, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & (x > 0) \\ -\frac{\pi}{2} & (x < 0) \end{cases}$$

□ Addition formulas – The following identities are commonly used:

Name	Formula
Cosine addition	$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
Sine addition	$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$
Tangent addition	$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$

$\mathbf{By} \ \alpha = 0$	$\mathbf{By} \ \alpha = \frac{\pi}{4}$	By $\alpha = \frac{\pi}{2}$		
$\cos\left(-\theta\right) = \cos(\theta)$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$	$\cos(\pi - \theta) = -\cos(\theta)$		
$\sin\left(-\theta\right) = -\sin(\theta)$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$	$\sin\left(\pi-\theta\right)=\sin(\theta)$		
$\tan\left(-\theta\right) = -\tan(\theta)$	$\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$	$\tan\left(\pi-\theta\right)=-\tan(\theta)$		

□ Shift	identities –	The	following	identities	are	commonly	used:
---------	--------------	-----	-----------	------------	-----	----------	-------

By $\frac{\pi}{2}$	By π
$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$	$\cos\left(\theta + \pi\right) = -\cos(\theta)$
$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$	$\sin\left(\theta + \pi\right) = -\sin(\theta)$
$\tan\left(\theta + \frac{\pi}{2}\right) = -\frac{1}{\tan(\theta)}$	$\tan\left(\theta+\pi\right)=\tan(\theta)$

Name	Formula
	$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$
	$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$
Product-to-sum	$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$
	$\cos(a)\sin(b) = \frac{1}{2}(\sin(a+b) - \sin(a-b))$
	$\tan(a)\tan(b) = \frac{\cos(a-b) - \cos(a+b)}{\cos(a-b) + \cos(a+b)}$
	$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$
Sum-to-product	$\cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$
	$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$
	$\sin(a) - \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$

 \square **Product-to-sum and sum-to-product identities** – The following identities are commonly used:

□ Law o	of sines -	- In a	given	triangle	of	lengths	a,b,c	and	opposite	angles	A, B, C,	the	law	of
sines stat	es that w	e have	:											

a	b	c
$\overline{\sin(A)}$	$= \frac{1}{\sin(B)} =$	$\overline{\sin(C)}$

Miscellaneous

 \square Values for common angles – The following table sums up the values for common angles to have in mind:

Angle θ (radians \leftrightarrow degrees)	$\cos(\theta)$	$\sin(\theta)$	$\tan(\theta)$
$0 \leftrightarrow 0^{\circ}$	1	0	0
$\frac{\pi}{6} \leftrightarrow 30^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4} \leftrightarrow 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3} \leftrightarrow 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2} \leftrightarrow 90^{\circ}$	0	1	∞

C Kashani theorem – The Kashani theorem, also known as the law of cosines, states that in a triangle, the lengths a, b, c and the angle γ between sides of length a and b satisfy the following equation:

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

Remark: for $\gamma = \frac{\pi}{2}$, the triangle is right and the identity is the Pythagorean theorem.