VIP Refresher: Trigonometry

Shervine Amidi

May 28, 2018

Definitions

\square Trigonometric functions - The following common trigonometric functions are 2π-periodic and are defined as follows:

Function	Domain and Image	Definition	Derivative
Cosine $\cos (\theta)$	$\theta \in \mathbb{R}$ $\cos (\theta) \in[-1,1]$	$\frac{\text { adjacent }}{\text { hypotenuse }}$	$-\sin (\theta)$
Sine $\sin (\theta)$	$\theta \in \mathbb{R}$ $\sin (\theta) \in[-1,1]$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\cos (\theta)$
Tangent $\tan (\theta)$	$\theta \in \mathbb{R} \backslash\{2 k \pi\}$ $\tan (\theta) \in]-\infty,+\infty[$	$\frac{\sin (\theta)}{\cos (\theta)}=\frac{\text { opposite }}{\text { adjacent }}$	$1+\tan ^{2}(\theta)$

\square Euler's formula - The following formula establishes a fundamental relationship between the trigonometric functions and the complex exponential function as follows:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Therefore, we have:

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2} \text { and } \sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \quad \text { and } \quad \tan (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{i\left(e^{i \theta}+e^{-i \theta}\right)}
$$

\square Inverse trigonometric functions - The common inverse trigonometric functions are defined as follows:

Function	Domain and Image	Definition	Derivative
Arccosine $\arccos (x)$	$x \in[-1,1]$ $\arccos (x) \in[0, \pi]$	$\cos (\arccos (x))=x$	$-\frac{1}{\sqrt{1-x^{2}}}$
$\operatorname{Arcsine}$ $\arcsin (x)$	$x \in[-1,1]$ $\arcsin (x) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$\sin (\arcsin (x))=x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\operatorname{Arctangent}$ $\arctan (x)$	$x \in]-\infty,+\infty[$ $\arctan (x) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$	$\tan (\arctan (x))=x$	$\frac{1}{1+x^{2}}$

Trigonometric identities

\square Pythagorean identity - The following identity is commonly used:

$$
\forall \theta, \quad \cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

\square Inverse trigonometric identities - The following identities are commonly used:

$$
\forall x, \quad \arccos (x)+\arcsin (x)=\frac{\pi}{2}
$$

$$
\forall x, \quad \arctan (x)+\arctan \left(\frac{1}{x}\right)=\left\{\begin{array}{cc}
\frac{\pi}{2} & (x>0) \\
-\frac{\pi}{2} & (x<0)
\end{array}\right.
$$

\square Addition formulas - The following identities are commonly used:

Name	Formula
Cosine addition	$\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$
Sine addition	$\sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a)$
Tangent addition	$\tan (a+b)=\frac{\tan (a)+\tan (b)}{1-\tan (a) \tan (b)}$

\square Symmetry identities - The following identities are commonly used:

By $\alpha=0$	By $\alpha=\frac{\pi}{4}$	By $\alpha=\frac{\pi}{2}$
$\cos (-\theta)=\cos (\theta)$	$\cos \left(\frac{\pi}{2}-\theta\right)=\sin (\theta)$	$\cos (\pi-\theta)=-\cos (\theta)$
$\sin (-\theta)=-\sin (\theta)$	$\sin \left(\frac{\pi}{2}-\theta\right)=\cos (\theta)$	$\sin (\pi-\theta)=\sin (\theta)$
$\tan (-\theta)=-\tan (\theta)$	$\tan \left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan (\theta)}$	$\tan (\pi-\theta)=-\tan (\theta)$

\square Shift identities - The following identities are commonly used:

By $\frac{\pi}{2}$	By π
$\cos \left(\theta+\frac{\pi}{2}\right)=-\sin (\theta)$	$\cos (\theta+\pi)=-\cos (\theta)$
$\sin \left(\theta+\frac{\pi}{2}\right)=\cos (\theta)$	$\sin (\theta+\pi)=-\sin (\theta)$
$\tan \left(\theta+\frac{\pi}{2}\right)=-\frac{1}{\tan (\theta)}$	$\tan (\theta+\pi)=\tan (\theta)$

\square Product-to-sum and sum-to-product identities - The following identities are commonly used:

Name	Formula
Product-to-sum	$\cos (a) \cos (b)=\frac{1}{2}(\cos (a-b)+\cos (a+b))$
	$\sin (a) \sin (b)=\frac{1}{2}(\cos (a-b)-\cos (a+b))$
	$\cos (a) \sin (b)=\frac{1}{2}(\sin (a+b)-\sin (a-b))$
	$\tan (a) \tan (b)=\frac{1}{2}(\sin (a+b)+\sin (a-b))$
	$\cos (a)+\cos (b)=2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
Sum-to-product	$\cos (a)-\cos (b)=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$
	$\sin (a)+\sin (b)=2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
	$\sin (a)-\sin (b)=2 \sin \left(\frac{a-b}{2}\right) \cos \left(\frac{a+b}{2}\right)$

Miscellaneous

\square Values for common angles - The following table sums up the values for common angles to have in mind:

Angle θ (radians \leftrightarrow degrees)	$\cos (\theta)$	$\sin (\theta)$	$\tan (\theta)$
$0 \leftrightarrow 0^{\circ}$	1	0	0
$\frac{\pi}{6} \leftrightarrow 30^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4} \leftrightarrow 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3} \leftrightarrow 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2} \leftrightarrow 90^{\circ}$	0	1	∞

\square Kashani theorem - The Kashani theorem, also known as the law of cosines, states that in a triangle, the lengths a, b, c and the angle γ between sides of length a and b satisfy the following equation:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

Remark: for $\gamma=\frac{\pi}{2}$, the triangle is right and the identity is the Pythagorean theorem.

