Getting Started in Factor Analysis (using Stata 10)

(ver. 1.5)

Oscar Torres-Reyna Data Consultant

Factor analysis is used mostly for data reduction purposes:

- To get a small set of variables (preferably uncorrelated) from a large set of variables (most of which are correlated to each other)
- To create indexes with variables that measure similar things (conceptually).

Two types of factor analysis

Exploratory
It is exploratory when you do not have a pre-defined idea of the structure or how many dimensions are in a set of variables.

Confirmatory.

It is confirmatory when you want to test specific hypothesis about the structure or the number of dimensions underlying a set of variables (i.e. in your data you may think there are two dimensions and you want to verify that).

Factor analysis: step 1

To run factor analysis use the command factor (type help factor for more details).

Total variance accounted by each factor. The sum of all eigenvalues = total number of variables.
When negative, the sum of eigenvalues = total number of factors (variables) with positive eigenvalues.
Kaiser criterion suggests to retain those factors with eigenvalues equal or higher than 1.

Difference between one eigenvalue and the next.

Factor loadings are the weights and correlations between each variable and the factor. The higher the load the more relevant in defining the factor's dimensionality. A negative value indicates an inverse impact on the factor. Here, two factors are retained because both have eigenvalues over 1 . It seems that 'owner' and 'competition' define factor1, and 'equality', 'respon' and 'ideol' define factor2.

Since the sum of eigenvalues = total number of variables. Proportion indicate the relative weight of each factor in the total variance. For example, $1.54525 / 5=0.3090$. The first factor explains 30.9\% of the total variance

Cumulative shows the amount of variance explained by $n+(n-$ 1) factors. For example, factor 1 and factor 2 account for 57.55% of the total variance.

Uniqueness is the variance that is 'unique' to the variable and not shared with other variables. It is equal to 1 - communality (variance that is shared with other variables). For example, 61.57\% of the variance in 'ideol' is not share with other variables in the overall factor model. On the contrary 'owner' has low variance not accounted by other variables (28.61\%). Notice that the greater 'uniqueness' the lower the relevance of the variable in the factor model.

Factor analysis: step 2 (final solution)

After running factor you need to rotate the factor loads to get a clearer pattern, just type rotate to get a final solution.

By default the rotation is varimax which produces orthogonal factors. This means that factors are not correlated to each other. This setting is recommended when you want to identify variables to create indexes or new variables without inter-correlated components

Same description as in the previous slide with new composition between the two factors. Still both factors explain 57.55% of the total variance observed.

The pattern matrix here offers a clearer picture of the relevance of each variable in the factor. Factor 1 is mostly defined by 'owner' and 'competition' and factor2 by 'equality', 'respon' and 'ideol' .

This is a conversion matrix to estimate the rotated factor loadings (RFL):

RFL = Factor loadings * Factor rotation

Rotated factor loadings (pattern matrix) and unique variances

variable	Factor1	Factor2	Uniqueness
ideo7	0.0869	0.6138	0.6157
equality	-0.1214	0.7505	0.4220
owner	0.8446	-0.0218	0.2861
respon	0.1610	0.6941	0.4922
competition	0.8307	0.0603	0.3063

Factor rotation matrix

		Factor1
	Factor2	
	Factor1	0.7487
	Factor2	-0.6629

NOTE: If you want the factors to be correlated (oblique rotation) you need to use the option promax after rotate:
rotate, promax
Type help rotate for details. See http://www.ats.ucla.edu/stat/stata/output/fa output.htm for more info.

Factor analysis: step 3 (predict)

To create the new variables, after factor, rotate you type predict.

```
predict factor1 factor2 /*or whatever name you prefer to identify the factors*/
```


Another option (called naïve by some) could be to create indexes out of each cluster of variables. For example, 'owner' and 'competition' define one factor. You could aggregate these two to create a new variable to measure 'market oriented attitudes'. On the other hand you could aggregate 'ideol', 'equality' and 'respon' to create an index to measure 'egalitarian attitudes'. Since all variables are in the same valence (liberal for small values, capitalist for larger values), we can create the two new variables as

```
gen market = (owner + competition)/2
gen egalitatiran = (ideol + equality + respon)/3
```

The main sources/references for this section are:

Books

- Factor Analysis in International Relations. Interpretation, Problem Areas and Application / Vincent, Jack. University of Florida Press, Gainsville, 1971.
- Factor Analysis. Statistical Methods and Practical Issues / Kim Jae-on, Charles W. Mueller, Sage publications, 1978.
- Introduction to Factor Analysis. What it is and How To Do It / Kim Jae-on, Charles W. Mueller, Sage publications, 1978.
- Statistics with STATA (updated for version 9) / Hamilton, Lawrence C. Thomson Books/Cole, 2006.

Online

- StatNotes: http://faculty.chass.ncsu.edu/garson/PA765/factor.htm
- StatSoft: http://www.statsoft.com/textbook/stfacan.html
- UCLA Resources: http://www.ats.ucla.edu/stat/stata/output/fa output.htm

