load_datasets
模块¶from model_insight.load_datasets import *
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
load_supplier
¶load_supplier().head()
Warranty Terms | Payment Terms | Technical Support | Sustainability Efforts | Finp.nancial Stability | Unit Cost | Lead Time (Days) | On Time Delivery | |
---|---|---|---|---|---|---|---|---|
1 | 2.42 | 2.80 | 8.25 | 3.09 | 8.21 | 1.05 | 8.0 | 0.75 |
2 | 6.51 | 1.88 | 3.60 | 6.45 | 4.31 | 1.21 | 13.0 | 0.83 |
3 | 8.51 | 1.06 | 2.97 | 9.36 | 5.06 | 1.22 | 12.0 | 0.91 |
4 | 4.63 | 4.60 | 5.84 | 7.34 | 9.20 | 1.01 | 9.0 | 0.72 |
5 | 4.62 | 7.44 | 1.50 | 8.93 | 4.01 | 1.03 | 7.0 | 0.97 |
load_supplier().info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 100 entries, 1 to 100 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Warranty Terms 100 non-null float64 1 Payment Terms 100 non-null float64 2 Technical Support 100 non-null float64 3 Sustainability Efforts 100 non-null float64 4 Finp.nancial Stability 100 non-null float64 5 Unit Cost 100 non-null float64 6 Lead Time (Days) 100 non-null float64 7 On Time Delivery 100 non-null float64 dtypes: float64(8) memory usage: 7.0 KB
load_supplier().describe()
Warranty Terms | Payment Terms | Technical Support | Sustainability Efforts | Finp.nancial Stability | Unit Cost | Lead Time (Days) | On Time Delivery | |
---|---|---|---|---|---|---|---|---|
count | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.00000 | 100.000000 | 100.000000 |
mean | 5.740600 | 5.374800 | 5.593800 | 5.469400 | 5.482100 | 1.15300 | 7.980000 | 0.844700 |
std | 2.681567 | 2.749968 | 2.685119 | 2.538964 | 2.593445 | 0.08597 | 4.235444 | 0.090436 |
min | 1.220000 | 1.060000 | 1.070000 | 1.090000 | 1.040000 | 1.01000 | 2.000000 | 0.700000 |
25% | 3.427500 | 2.740000 | 3.307500 | 3.065000 | 3.307500 | 1.07000 | 4.000000 | 0.775000 |
50% | 6.170000 | 5.265000 | 5.575000 | 5.530000 | 5.240000 | 1.15000 | 8.000000 | 0.840000 |
75% | 7.930000 | 7.880000 | 7.950000 | 7.485000 | 7.922500 | 1.22000 | 11.250000 | 0.920000 |
max | 9.970000 | 9.970000 | 9.890000 | 9.870000 | 9.810000 | 1.30000 | 15.000000 | 1.000000 |
load_supplier().to_excel('load_supplier.xlsx',index_label='Supplier')
load_roller20
¶load_roller20().head()
Name | Park | City/Region | City/State/Region | Country/Region | Geographic Region | Construction | Type | Status | Year/Date Opened | Height (feet) | Speed (mph) | Length (feet) | Inversions (YES or NO) | Number of Inversions | Drop (feet) | Duration (min:sec) | G Force | Vertical Angle (degrees) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 Inversion Roller Coaster | Chimelong Paradise | Panyu | Guangzhou, Guangdong | China | Asia | Steel | Sit Down | Operating | 2006 | 98.4 | 45.0 | 2788.8 | YES | 10.0 | NaN | 01:32:00 | NaN | NaN |
1 | Abismo | Parque de Atracciones de Madrid | Madrid | Madrid | Spain | Europe | Steel | Sit Down | Operating | 2006 | 151.6 | 65.2 | 1476.4 | YES | 2.0 | NaN | 01:00:00 | 4.0 | NaN |
2 | Adrenaline Peak | Oaks Amusement Park | Portland | Oregon | United States | North America | Steel | Sit Down | Operating | 2018 | 72.0 | 45.0 | 1050.0 | YES | 3.0 | NaN | NaN | NaN | 97.0 |
3 | Afterburn | Carowinds | Charlotte | North Carolina | United States | North America | Steel | Inverted | Operating | 1999 | 113.0 | 62.0 | 2956.0 | YES | 6.0 | NaN | 02:47:00 | NaN | NaN |
4 | Alpengeist | Busch Gardens Williamsburg | Williamsburg | Virginia | United States | North America | Steel | Inverted | Operating | 1997 | 195.0 | 67.0 | 3828.0 | YES | 6.0 | 170.0 | 03:10:00 | 3.7 | NaN |
load_roller20().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 20 entries, 0 to 19 Data columns (total 19 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Name 20 non-null object 1 Park 20 non-null object 2 City/Region 20 non-null object 3 City/State/Region 20 non-null object 4 Country/Region 20 non-null object 5 Geographic Region 20 non-null object 6 Construction 20 non-null object 7 Type 20 non-null object 8 Status 20 non-null object 9 Year/Date Opened 20 non-null object 10 Height (feet) 20 non-null float64 11 Speed (mph) 20 non-null float64 12 Length (feet) 20 non-null float64 13 Inversions (YES or NO) 20 non-null object 14 Number of Inversions 20 non-null float64 15 Drop (feet) 9 non-null float64 16 Duration (min:sec) 17 non-null object 17 G Force 4 non-null float64 18 Vertical Angle (degrees) 4 non-null float64 dtypes: float64(7), object(12) memory usage: 3.1+ KB
load_roller20().describe()
Height (feet) | Speed (mph) | Length (feet) | Number of Inversions | Drop (feet) | G Force | Vertical Angle (degrees) | |
---|---|---|---|---|---|---|---|
count | 20.000000 | 20.000000 | 20.000000 | 20.000000 | 9.000000 | 4.000 | 4.000000 |
mean | 113.620000 | 55.395000 | 2935.780000 | 2.800000 | 111.911111 | 4.025 | 71.750000 |
std | 35.357506 | 8.802301 | 1050.537719 | 3.488326 | 60.582329 | 0.250 | 17.951323 |
min | 45.200000 | 40.000000 | 1050.000000 | 0.000000 | 31.200000 | 3.700 | 55.000000 |
25% | 97.550000 | 49.925000 | 2357.175000 | 0.000000 | 81.700000 | 3.925 | 62.500000 |
50% | 108.300000 | 53.900000 | 2878.400000 | 1.000000 | 90.000000 | 4.050 | 67.500000 |
75% | 120.325000 | 62.800000 | 3661.275000 | 5.250000 | 150.000000 | 4.150 | 76.750000 |
max | 195.000000 | 73.000000 | 4882.000000 | 10.000000 | 210.000000 | 4.300 | 97.000000 |
load_roller20().to_excel('load_roller20.xlsx',index=False)
load_aircraft
¶load_aircraft()
最大速度(马赫) | 飞行范围(km) | 最大负载(磅) | 费用(美元) | 可靠性 | 灵敏性 | |
---|---|---|---|---|---|---|
A | 2.0 | 1500.0 | 20000.0 | 5500000.0 | 0.5 | 1.0 |
B | 2.5 | 2700.0 | 18000.0 | 6500000.0 | 0.3 | 0.5 |
C | 1.8 | 2000.0 | 21000.0 | 4500000.0 | 0.7 | 0.7 |
D | 2.2 | 1800.0 | 20000.0 | 5000000.0 | 0.5 | 0.5 |
load_aircraft().info()
<class 'pandas.core.frame.DataFrame'> Index: 4 entries, A to D Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 最大速度(马赫) 4 non-null float64 1 飞行范围(km) 4 non-null float64 2 最大负载(磅) 4 non-null float64 3 费用(美元) 4 non-null float64 4 可靠性 4 non-null float64 5 灵敏性 4 non-null float64 dtypes: float64(6) memory usage: 224.0+ bytes
load_aircraft().describe()
最大速度(马赫) | 飞行范围(km) | 最大负载(磅) | 费用(美元) | 可靠性 | 灵敏性 | |
---|---|---|---|---|---|---|
count | 4.000000 | 4.000000 | 4.000000 | 4.000000e+00 | 4.000000 | 4.000000 |
mean | 2.125000 | 2000.000000 | 19750.000000 | 5.375000e+06 | 0.500000 | 0.675000 |
std | 0.298608 | 509.901951 | 1258.305739 | 8.539126e+05 | 0.163299 | 0.236291 |
min | 1.800000 | 1500.000000 | 18000.000000 | 4.500000e+06 | 0.300000 | 0.500000 |
25% | 1.950000 | 1725.000000 | 19500.000000 | 4.875000e+06 | 0.450000 | 0.500000 |
50% | 2.100000 | 1900.000000 | 20000.000000 | 5.250000e+06 | 0.500000 | 0.600000 |
75% | 2.275000 | 2175.000000 | 20250.000000 | 5.750000e+06 | 0.550000 | 0.775000 |
max | 2.500000 | 2700.000000 | 21000.000000 | 6.500000e+06 | 0.700000 | 1.000000 |
load_aircraft().to_excel('load_aircraft.xlsx')
load_hospital
¶load_hospital().head()
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
---|---|---|---|---|---|---|---|---|---|
A | 100.0 | 90.0 | 100.0 | 84.0 | 90.0 | 100.0 | 100.0 | 100.0 | 100.0 |
B | 100.0 | 100.0 | 78.6 | 100.0 | 90.0 | 100.0 | 100.0 | 100.0 | 100.0 |
C | 75.0 | 100.0 | 85.7 | 100.0 | 90.0 | 100.0 | 100.0 | 100.0 | 100.0 |
D | 100.0 | 100.0 | 78.6 | 100.0 | 90.0 | 100.0 | 94.4 | 100.0 | 100.0 |
E | 100.0 | 90.0 | 100.0 | 100.0 | 100.0 | 90.0 | 100.0 | 100.0 | 80.0 |
load_hospital().info()
<class 'pandas.core.frame.DataFrame'> Index: 11 entries, A to K Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 X1 11 non-null float64 1 X2 11 non-null float64 2 X3 11 non-null float64 3 X4 11 non-null float64 4 X5 11 non-null float64 5 X6 11 non-null float64 6 X7 11 non-null float64 7 X8 11 non-null float64 8 X9 11 non-null float64 dtypes: float64(9) memory usage: 880.0+ bytes
load_hospital().describe()
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
---|---|---|---|---|---|---|---|---|---|
count | 11.000000 | 11.000000 | 11.000000 | 11.000000 | 11.000000 | 11.000000 | 11.000000 | 11.000000 | 11.000000 |
mean | 96.590909 | 97.272727 | 90.272727 | 98.545455 | 91.818182 | 99.090909 | 95.454545 | 98.700000 | 98.181818 |
std | 8.083372 | 4.670994 | 9.180751 | 4.824182 | 6.030227 | 3.015113 | 13.324591 | 4.311612 | 6.030227 |
min | 75.000000 | 90.000000 | 78.600000 | 84.000000 | 80.000000 | 90.000000 | 55.600000 | 85.700000 | 80.000000 |
25% | 100.000000 | 95.000000 | 82.150000 | 100.000000 | 90.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 |
50% | 100.000000 | 100.000000 | 92.900000 | 100.000000 | 90.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 |
75% | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 95.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 |
max | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 | 100.000000 |
load_battery
¶load_battery().head()
Price(USD) | Weight(pounds) | Power Rating Capability(kWh) | steady | peak | Length(inch) | Width(inch) | Height(inch) | Depth of Discharge(DoD)% | Circles of Life Time | Round Trip Efficiency(RET)% | Warranty(year) | Low Temperature | High Temperature | Battery Type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10000.0 | 297.0 | 14.0 | 5.0 | 5.0 | 20.8 | 15.7 | 41.0 | 90.0 | 6000.0 | 97.0 | 15.0 | 0.00 | 50.00 | LFP |
2 | 13000.0 | 297.0 | 13.0 | 2.0 | 3.3 | 20.8 | 15.7 | 41.0 | 90.0 | 6000.0 | 97.0 | 10.0 | 0.00 | 50.00 | NMC |
3 | 9500.0 | 348.0 | 10.0 | 2.0 | 3.3 | 68.0 | 26.0 | 11.0 | 100.0 | 10000.0 | 85.0 | 10.0 | -4.24 | 36.72 | LFP |
4 | 5950.0 | 331.0 | 2.5 | 2.0 | 3.3 | 25.0 | 15.0 | 56.0 | 90.0 | 10000.0 | 81.6 | 10.0 | -4.24 | 36.72 | LFP |
5 | 11900.0 | 381.0 | 5.0 | 2.0 | 3.3 | 25.0 | 15.0 | 56.0 | 90.0 | 10000.0 | 81.6 | 10.0 | -4.24 | 36.72 | LFP |
load_battery().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 36 entries, 1 to 36 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Price(USD) 36 non-null float64 1 Weight(pounds) 36 non-null float64 2 Power Rating Capability(kWh) 36 non-null float64 3 steady 36 non-null float64 4 peak 36 non-null float64 5 Length(inch) 36 non-null float64 6 Width(inch) 36 non-null float64 7 Height(inch) 36 non-null float64 8 Depth of Discharge(DoD)% 36 non-null float64 9 Circles of Life Time 36 non-null float64 10 Round Trip Efficiency(RET)% 36 non-null float64 11 Warranty(year) 36 non-null float64 12 Low Temperature 36 non-null float64 13 High Temperature 36 non-null float64 14 Battery Type 36 non-null object dtypes: float64(14), object(1) memory usage: 4.3+ KB
load_battery().describe()
Price(USD) | Weight(pounds) | Power Rating Capability(kWh) | steady | peak | Length(inch) | Width(inch) | Height(inch) | Depth of Discharge(DoD)% | Circles of Life Time | Round Trip Efficiency(RET)% | Warranty(year) | Low Temperature | High Temperature | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 | 36.000000 |
mean | 11320.882222 | 318.036667 | 9.799722 | 3.870556 | 6.850000 | 33.058333 | 21.211111 | 34.079722 | 89.941667 | 6200.000000 | 91.171944 | 10.063889 | -4.240000 | 36.720000 |
std | 5766.240606 | 146.627600 | 4.731948 | 1.907664 | 3.338028 | 12.740550 | 8.771781 | 34.406330 | 5.875284 | 2355.783158 | 6.067850 | 1.548004 | 12.465449 | 27.508461 |
min | 1976.000000 | 30.000000 | 1.200000 | 1.500000 | 3.000000 | 13.500000 | 9.840000 | 2.130000 | 80.000000 | 1000.000000 | 80.000000 | 5.000000 | -30.000000 | -70.000000 |
25% | 7037.500000 | 268.250000 | 6.375000 | 3.000000 | 4.800000 | 25.000000 | 15.000000 | 9.000000 | 89.940000 | 5000.000000 | 84.750000 | 10.000000 | -10.000000 | 36.720000 |
50% | 11320.880000 | 318.040000 | 10.000000 | 3.870000 | 6.850000 | 33.060000 | 20.205000 | 34.080000 | 89.970000 | 6200.000000 | 91.585000 | 10.000000 | -4.240000 | 37.360000 |
75% | 15000.000000 | 351.000000 | 13.125000 | 5.000000 | 7.600000 | 39.000000 | 25.250000 | 45.875000 | 90.000000 | 6300.000000 | 96.500000 | 10.000000 | 0.000000 | 50.000000 |
max | 23800.000000 | 735.000000 | 20.000000 | 12.800000 | 19.200000 | 68.000000 | 50.000000 | 191.000000 | 100.000000 | 10000.000000 | 100.000000 | 15.000000 | 20.000000 | 60.000000 |
load_university
¶load_university().head()
人均专著 | 生师比 | 科研经费 | 逾期毕业率 | |
---|---|---|---|---|
院校A | 0.1 | 5 | 5000 | 4.7 |
院校B | 0.2 | 6 | 6000 | 5.6 |
院校C | 0.4 | 7 | 7000 | 6.7 |
院校D | 0.9 | 10 | 10000 | 2.3 |
院校E | 1.2 | 2 | 400 | 1.8 |
load_university().info()
<class 'pandas.core.frame.DataFrame'> Index: 5 entries, 院校A to 院校E Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 人均专著 5 non-null float64 1 生师比 5 non-null int64 2 科研经费 5 non-null int64 3 逾期毕业率 5 non-null float64 dtypes: float64(2), int64(2) memory usage: 200.0+ bytes
load_university().describe()
人均专著 | 生师比 | 科研经费 | 逾期毕业率 | |
---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | 0.560000 | 6.000000 | 5680.000000 | 4.220000 |
std | 0.472229 | 2.915476 | 3494.567212 | 2.111161 |
min | 0.100000 | 2.000000 | 400.000000 | 1.800000 |
25% | 0.200000 | 5.000000 | 5000.000000 | 2.300000 |
50% | 0.400000 | 6.000000 | 6000.000000 | 4.700000 |
75% | 0.900000 | 7.000000 | 7000.000000 | 5.600000 |
max | 1.200000 | 10.000000 | 10000.000000 | 6.700000 |
load_computer
¶load_computer().head()
产品净重(kg) | 长mm*宽mm*厚mm | CPU集成显卡 | 处理器基准频率(GHz) | 处理器加速频率 | CPU型号 | 核心数 | 线程数 | 内存类型 | 内存频率(MHz) | ... | 理论续航时间 | 处理器 | 固态硬盘 | 厚度 | 机身材质 | 内存容量(GB) | 屏幕尺寸 | 系列 | 显卡型号 | 价格(元) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
adolbook13 2021 | 1.20 | 304.9*199.9*12.9 | intel集成显卡 | 2.4 | 4.2 | i5-1135G7 | 4.0 | 8.0 | LPDDR4x | 4266.0 | ... | 5-8小时 | intel i5 | 512GB | 15.0mm及以下 | 金属+复合材料 | 16.0 | 12.0-13.9英寸 | a-豆-adolbook | 集成显卡 | 5099.0 |
V5200 | 1.70 | 360*235*17.6 | nan | 2.8 | 4.7 | i7-1165G7 | 4.0 | 8.0 | DDR4 | 3200.0 | ... | 2-5h | intel i7 | 512GB | 15.1-18.0mm | 复合材质 | 16.0 | 15.0-15.9英寸 | 华硕-VivoBook | intel 集成显卡 | 5299.0 |
联想S14 2021款 | 1.50 | 324*218*17.9 | AMD集成显卡 | 1.8 | 4.3 | R7-5700U | 8.0 | 16.0 | DDR4 | 3200.0 | ... | 5-8小时 | AMD R7 | 512GB | 15.1-18.0mm | 金属+复合材料 | 24.0 | 14.0-14.9英寸 | 联想-扬天系列 | 集成显卡 | 5799.0 |
U4700 | 1.19 | 319*208*13.5 | intel集成显卡 | 2.4 | 4.2 | i5-1135G7 | 4.0 | 8.0 | LPDDR4x | 4266.0 | ... | 5-8小时 | intel i5 | 512GB | 15.0mm及以下 | 金属+复合材料 | 16.0 | 14.0-14.9英寸 | 华硕-灵耀14 | 集成显卡 | 4799.0 |
灵越3511 | 1.73 | 358*235*18 | intel集成显卡 | 2.8 | 4.7 | i7-1165G7 | 4.0 | 8.0 | DDR4 | 3200.0 | ... | 5-8小时 | intel i7 | 256GB | 18.1-20.0mm | 复合材质 | 16.0 | 15.0-15.9英寸 | 戴尔-成就系列 | MX350 | 6299.0 |
5 rows × 24 columns
load_computer().info()
<class 'pandas.core.frame.DataFrame'> Index: 8 entries, adolbook13 2021 to TPN-W144 Data columns (total 24 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 产品净重(kg) 8 non-null float64 1 长mm*宽mm*厚mm 8 non-null object 2 CPU集成显卡 8 non-null object 3 处理器基准频率(GHz) 8 non-null float64 4 处理器加速频率 8 non-null float64 5 CPU型号 8 non-null object 6 核心数 8 non-null float64 7 线程数 8 non-null float64 8 内存类型 8 non-null object 9 内存频率(MHz) 7 non-null float64 10 显卡类型 8 non-null object 11 屏幕尺寸(英寸) 8 non-null object 12 屏幕类型 8 non-null object 13 电池容量(WH) 8 non-null float64 14 理论续航时间 8 non-null object 15 处理器 8 non-null object 16 固态硬盘 8 non-null object 17 厚度 8 non-null object 18 机身材质 8 non-null object 19 内存容量(GB) 8 non-null float64 20 屏幕尺寸 8 non-null object 21 系列 8 non-null object 22 显卡型号 8 non-null object 23 价格(元) 8 non-null float64 dtypes: float64(9), object(15) memory usage: 1.6+ KB
load_computer().describe()
产品净重(kg) | 处理器基准频率(GHz) | 处理器加速频率 | 核心数 | 线程数 | 内存频率(MHz) | 电池容量(WH) | 内存容量(GB) | 价格(元) | |
---|---|---|---|---|---|---|---|---|---|
count | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 7.000000 | 8.000000 | 8.000000 | 8.000000 |
mean | 1.418750 | 2.237500 | 4.337500 | 4.500000 | 9.000000 | 3275.857143 | 48.875000 | 17.000000 | 5536.500000 |
std | 0.254415 | 0.713017 | 0.250357 | 1.414214 | 2.828427 | 780.606266 | 10.709642 | 2.828427 | 641.287767 |
min | 1.050000 | 1.000000 | 4.000000 | 4.000000 | 8.000000 | 2133.000000 | 37.000000 | 16.000000 | 4799.000000 |
25% | 1.197500 | 1.750000 | 4.200000 | 4.000000 | 8.000000 | 2933.000000 | 41.750000 | 16.000000 | 5074.000000 |
50% | 1.440000 | 2.400000 | 4.250000 | 4.000000 | 8.000000 | 3200.000000 | 45.500000 | 16.000000 | 5349.000000 |
75% | 1.625000 | 2.800000 | 4.475000 | 4.000000 | 8.000000 | 3733.000000 | 53.250000 | 16.000000 | 5924.000000 |
max | 1.730000 | 3.100000 | 4.700000 | 8.000000 | 16.000000 | 4266.000000 | 67.000000 | 24.000000 | 6599.000000 |
load_portfolio
¶load_portfolio().head()
r(%) | q(%) | p(%) | u(RMB) | |
---|---|---|---|---|
s1 | 28.0 | 2.5 | 1.0 | 103.0 |
s2 | 21.0 | 1.5 | 2.0 | 198.0 |
s3 | 23.0 | 5.5 | 4.5 | 52.0 |
s4 | 25.0 | 2.6 | 6.5 | 40.0 |
load_portfolio().info()
<class 'pandas.core.frame.DataFrame'> Index: 4 entries, s1 to s4 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 r(%) 4 non-null float64 1 q(%) 4 non-null float64 2 p(%) 4 non-null float64 3 u(RMB) 4 non-null float64 dtypes: float64(4) memory usage: 160.0+ bytes
load_portfolio().describe()
r(%) | q(%) | p(%) | u(RMB) | |
---|---|---|---|---|
count | 4.000000 | 4.000000 | 4.000000 | 4.000000 |
mean | 24.250000 | 3.025000 | 3.500000 | 98.250000 |
std | 2.986079 | 1.723127 | 2.483277 | 71.890542 |
min | 21.000000 | 1.500000 | 1.000000 | 40.000000 |
25% | 22.500000 | 2.250000 | 1.750000 | 49.000000 |
50% | 24.000000 | 2.550000 | 3.250000 | 77.500000 |
75% | 25.750000 | 3.325000 | 5.000000 | 126.750000 |
max | 28.000000 | 5.500000 | 6.500000 | 198.000000 |
load_ambulance
¶load_ambulance().head()
0 | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 1 | 1 |
3 | 0 | 0 | 1 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 1 | 1 |
load_ambulance().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 6 non-null int32 1 1 6 non-null int32 2 2 6 non-null int32 3 3 6 non-null int32 4 4 6 non-null int32 5 5 6 non-null int32 dtypes: int32(6) memory usage: 272.0 bytes
load_ambulance().describe()
0 | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
count | 6.000000 | 6.000000 | 6.000000 | 6.000000 | 6.000000 | 6.000000 |
mean | 0.333333 | 0.333333 | 0.666667 | 0.333333 | 0.500000 | 0.500000 |
std | 0.516398 | 0.516398 | 0.516398 | 0.516398 | 0.547723 | 0.547723 |
min | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 0.000000 | 0.000000 | 0.250000 | 0.000000 | 0.000000 | 0.000000 |
50% | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.500000 | 0.500000 |
75% | 0.750000 | 0.750000 | 1.000000 | 0.750000 | 1.000000 | 1.000000 |
max | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
load_oil
¶load_oil().head()
价格 | 硬度 | |
---|---|---|
VEG1 | 110.0 | 8.8 |
VEG2 | 120.0 | 6.1 |
OIL1 | 130.0 | 2.0 |
OIL2 | 110.0 | 4.2 |
OIL3 | 115.0 | 5.0 |
load_oil().info()
<class 'pandas.core.frame.DataFrame'> Index: 5 entries, VEG1 to OIL3 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 价格 5 non-null float64 1 硬度 5 non-null float64 dtypes: float64(2) memory usage: 120.0+ bytes
load_oil().describe()
价格 | 硬度 | |
---|---|---|
count | 5.0000 | 5.000000 |
mean | 117.0000 | 5.220000 |
std | 8.3666 | 2.502399 |
min | 110.0000 | 2.000000 |
25% | 110.0000 | 4.200000 |
50% | 115.0000 | 5.000000 |
75% | 120.0000 | 6.100000 |
max | 130.0000 | 8.800000 |
load_factory_cloths
¶load_factory_clothes().head()
设备租金(元) | 材料成本(元/件) | 销售价格(元/件) | 人工工时(小时/件) | 设备工时(小时/件) | 设备可用工时 | 人工可用工时 | |
---|---|---|---|---|---|---|---|
A | 5000.0 | 280.0 | 400.0 | 5.0 | 3.0 | 300.0 | 600.0 |
B | 2000.0 | 30.0 | 40.0 | 1.0 | 0.5 | 300.0 | 800.0 |
C | 2000.0 | 200.0 | 300.0 | 4.0 | 2.0 | 300.0 | 600.0 |
load_factory_clothes().info()
<class 'pandas.core.frame.DataFrame'> Index: 3 entries, A to C Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 设备租金(元) 3 non-null float64 1 材料成本(元/件) 3 non-null float64 2 销售价格(元/件) 3 non-null float64 3 人工工时(小时/件) 3 non-null float64 4 设备工时(小时/件) 3 non-null float64 5 设备可用工时 3 non-null float64 6 人工可用工时 3 non-null float64 dtypes: float64(7) memory usage: 192.0+ bytes
load_factory_clothes().describe()
设备租金(元) | 材料成本(元/件) | 销售价格(元/件) | 人工工时(小时/件) | 设备工时(小时/件) | 设备可用工时 | 人工可用工时 | |
---|---|---|---|---|---|---|---|
count | 3.000000 | 3.000000 | 3.000000 | 3.000000 | 3.000000 | 3.0 | 3.000000 |
mean | 3000.000000 | 170.000000 | 246.666667 | 3.333333 | 1.833333 | 300.0 | 666.666667 |
std | 1732.050808 | 127.671453 | 185.831465 | 2.081666 | 1.258306 | 0.0 | 115.470054 |
min | 2000.000000 | 30.000000 | 40.000000 | 1.000000 | 0.500000 | 300.0 | 600.000000 |
25% | 2000.000000 | 115.000000 | 170.000000 | 2.500000 | 1.250000 | 300.0 | 600.000000 |
50% | 2000.000000 | 200.000000 | 300.000000 | 4.000000 | 2.000000 | 300.0 | 600.000000 |
75% | 3500.000000 | 240.000000 | 350.000000 | 4.500000 | 2.500000 | 300.0 | 700.000000 |
max | 5000.000000 | 280.000000 | 400.000000 | 5.000000 | 3.000000 | 300.0 | 800.000000 |
load_swim
¶load_swim().head()
泳姿1 | 泳姿2 | 泳姿3 | 泳姿4 | |
---|---|---|---|---|
A | 56 | 74 | 61 | 63 |
B | 63 | 69 | 65 | 71 |
C | 57 | 77 | 63 | 67 |
D | 55 | 76 | 62 | 62 |
E | 60 | 71 | 62 | 68 |
load_swim().info()
<class 'pandas.core.frame.DataFrame'> Index: 5 entries, A to E Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 泳姿1 5 non-null int64 1 泳姿2 5 non-null int64 2 泳姿3 5 non-null int64 3 泳姿4 5 non-null int64 dtypes: int64(4) memory usage: 200.0+ bytes
load_swim().describe()
泳姿1 | 泳姿2 | 泳姿3 | 泳姿4 | |
---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | 58.200000 | 73.400000 | 62.600000 | 66.200000 |
std | 3.271085 | 3.361547 | 1.516575 | 3.701351 |
min | 55.000000 | 69.000000 | 61.000000 | 62.000000 |
25% | 56.000000 | 71.000000 | 62.000000 | 63.000000 |
50% | 57.000000 | 74.000000 | 62.000000 | 67.000000 |
75% | 60.000000 | 76.000000 | 63.000000 | 68.000000 |
max | 63.000000 | 77.000000 | 65.000000 | 71.000000 |
load_plant
¶load_plant().head()
unique_id | Benefit | Taxonomic Uniqueness | Feasibility of Success | Year 1 cost | Year 2 cost | Year 3 cost | Year 4 cost | Year 5 cost | Year 6 cost | ... | Year 16 cost | Year 17 cost | Year 18 cost | Year 19 cost | Year 20 cost | Year 21 cost | Year 22 cost | Year 23 cost | Year 24 cost | Year 25 cost | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1-Flowering Plants-502 | 0.66 | 0.67 | 0.60 | 11616.17065 | 6053.241613 | 5993.308527 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 1-Flowering Plants-436 | 0.66 | 0.67 | 0.22 | 12356.61827 | 10136.971140 | 10036.605090 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 1-Flowering Plants-536 | 0.99 | 0.67 | 0.87 | 20849.60760 | 20643.175840 | 20438.787970 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 1-Flowering Plants-486 | 0.66 | 0.67 | 0.71 | 27820.04342 | 16009.423390 | 10659.566790 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 1-Flowering Plants-183 | 0.66 | 0.67 | 0.11 | 22163.13537 | 18663.079030 | 18478.296070 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5 rows × 29 columns
load_plant().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 29 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 unique_id 30 non-null object 1 Benefit 30 non-null float64 2 Taxonomic Uniqueness 30 non-null float64 3 Feasibility of Success 30 non-null float64 4 Year 1 cost 30 non-null float64 5 Year 2 cost 30 non-null float64 6 Year 3 cost 30 non-null float64 7 Year 4 cost 30 non-null float64 8 Year 5 cost 30 non-null float64 9 Year 6 cost 30 non-null float64 10 Year 7 cost 30 non-null float64 11 Year 8 cost 30 non-null float64 12 Year 9 cost 30 non-null float64 13 Year 10 cost 30 non-null float64 14 Year 11 cost 30 non-null float64 15 Year 12 cost 30 non-null float64 16 Year 13 cost 30 non-null float64 17 Year 14 cost 30 non-null float64 18 Year 15 cost 30 non-null float64 19 Year 16 cost 30 non-null float64 20 Year 17 cost 30 non-null float64 21 Year 18 cost 30 non-null float64 22 Year 19 cost 30 non-null float64 23 Year 20 cost 30 non-null float64 24 Year 21 cost 30 non-null float64 25 Year 22 cost 30 non-null float64 26 Year 23 cost 30 non-null float64 27 Year 24 cost 30 non-null float64 28 Year 25 cost 30 non-null float64 dtypes: float64(28), object(1) memory usage: 6.9+ KB
load_plant().describe()
Benefit | Taxonomic Uniqueness | Feasibility of Success | Year 1 cost | Year 2 cost | Year 3 cost | Year 4 cost | Year 5 cost | Year 6 cost | Year 7 cost | ... | Year 16 cost | Year 17 cost | Year 18 cost | Year 19 cost | Year 20 cost | Year 21 cost | Year 22 cost | Year 23 cost | Year 24 cost | Year 25 cost | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | 30.000000 | ... | 30.000000 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
mean | 0.687000 | 0.692000 | 0.531000 | 75573.157018 | 68724.205860 | 60245.414364 | 16024.663166 | 14849.274923 | 542.028767 | 444.232623 | ... | 406.179579 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
std | 0.179658 | 0.083724 | 0.247739 | 47282.794778 | 48932.509438 | 45254.236766 | 24532.181619 | 23449.894949 | 2492.802573 | 2433.162284 | ... | 2224.737176 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
min | 0.330000 | 0.670000 | 0.110000 | 11616.170650 | 6053.241613 | 5993.308527 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
25% | 0.660000 | 0.670000 | 0.280000 | 41815.493245 | 29554.317488 | 26533.674870 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
50% | 0.660000 | 0.670000 | 0.570000 | 60693.027140 | 57344.519770 | 44535.842565 | 6121.302150 | 4715.718128 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
75% | 0.660000 | 0.670000 | 0.717500 | 101029.077045 | 98632.339030 | 92289.050550 | 27077.142335 | 25124.893505 | 0.000000 | 0.000000 | ... | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
max | 0.990000 | 1.000000 | 0.990000 | 175872.572400 | 172674.094400 | 167575.571300 | 114071.257200 | 106405.852700 | 13460.248480 | 13326.978690 | ... | 12185.387360 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
8 rows × 28 columns
load_tickets
¶load_tickets().head()
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
A | 0 | 50 | 0 | 40 | 25 | 10 |
B | 50 | 0 | 15 | 20 | 0 | 25 |
C | 0 | 15 | 0 | 10 | 20 | 0 |
D | 40 | 20 | 10 | 0 | 10 | 25 |
E | 25 | 0 | 20 | 10 | 0 | 55 |
load_tickets().info()
<class 'pandas.core.frame.DataFrame'> Index: 6 entries, A to F Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 A 6 non-null int64 1 B 6 non-null int64 2 C 6 non-null int64 3 D 6 non-null int64 4 E 6 non-null int64 5 F 6 non-null int64 dtypes: int64(6) memory usage: 336.0+ bytes
load_tickets().describe()
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
count | 6.000000 | 6.000000 | 6.000000 | 6.000000 | 6.000000 | 6.000000 |
mean | 20.833333 | 18.333333 | 7.500000 | 17.500000 | 18.333333 | 19.166667 |
std | 21.075262 | 18.618987 | 8.803408 | 14.053469 | 20.655911 | 20.836666 |
min | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 2.500000 | 3.750000 | 0.000000 | 10.000000 | 2.500000 | 2.500000 |
50% | 17.500000 | 17.500000 | 5.000000 | 15.000000 | 15.000000 | 17.500000 |
75% | 36.250000 | 23.750000 | 13.750000 | 23.750000 | 23.750000 | 25.000000 |
max | 50.000000 | 50.000000 | 20.000000 | 40.000000 | 55.000000 | 55.000000 |
load_firestation
¶load_firestation()
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 7 | 12 | 18 | 20 | 24 | 26 | 25 | 28 |
2 | 14 | 5 | 8 | 15 | 16 | 18 | 18 | 18 |
3 | 19 | 9 | 4 | 14 | 10 | 22 | 16 | 13 |
4 | 14 | 15 | 15 | 10 | 18 | 15 | 14 | 18 |
5 | 20 | 18 | 12 | 20 | 9 | 25 | 14 | 12 |
6 | 18 | 21 | 20 | 16 | 20 | 6 | 10 | 15 |
7 | 22 | 18 | 20 | 15 | 16 | 15 | 5 | 9 |
8 | 30 | 22 | 15 | 20 | 14 | 18 | 8 | 6 |
load_firestation().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 8 entries, 1 to 8 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 1 8 non-null int32 1 2 8 non-null int32 2 3 8 non-null int32 3 4 8 non-null int32 4 5 8 non-null int32 5 6 8 non-null int32 6 7 8 non-null int32 7 8 8 non-null int32 dtypes: int32(8) memory usage: 388.0 bytes
load_firestation().describe()
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
count | 8.000000 | 8.00000 | 8.000000 | 8.000000 | 8.00000 | 8.000000 | 8.000000 | 8.000000 |
mean | 18.000000 | 15.00000 | 14.000000 | 16.250000 | 15.87500 | 18.125000 | 13.750000 | 14.875000 |
std | 6.740072 | 5.95219 | 5.732115 | 3.575712 | 4.96955 | 6.446206 | 6.250714 | 6.728139 |
min | 7.000000 | 5.00000 | 4.000000 | 10.000000 | 9.00000 | 6.000000 | 5.000000 | 6.000000 |
25% | 14.000000 | 11.25000 | 11.000000 | 14.750000 | 13.00000 | 15.000000 | 9.500000 | 11.250000 |
50% | 18.500000 | 16.50000 | 15.000000 | 15.500000 | 16.00000 | 18.000000 | 14.000000 | 14.000000 |
75% | 20.500000 | 18.75000 | 18.500000 | 20.000000 | 18.50000 | 22.750000 | 16.500000 | 18.000000 |
max | 30.000000 | 22.00000 | 20.000000 | 20.000000 | 24.00000 | 26.000000 | 25.000000 | 28.000000 |
load_carrier
¶load_carrier()
length(cm) | weight(kg) | number | |
---|---|---|---|
C1 | 48.7 | 2000.0 | 8.0 |
C2 | 52.0 | 3000.0 | 7.0 |
C3 | 61.3 | 1000.0 | 9.0 |
C4 | 72.0 | 500.0 | 6.0 |
C5 | 48.7 | 4000.0 | 6.0 |
C6 | 52.0 | 2000.0 | 4.0 |
C7 | 64.0 | 1000.0 | 8.0 |
load_carrier().info()
<class 'pandas.core.frame.DataFrame'> Index: 7 entries, C1 to C7 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 length(cm) 7 non-null float64 1 weight(kg) 7 non-null float64 2 number 7 non-null float64 dtypes: float64(3) memory usage: 224.0+ bytes
load_carrier().describe()
length(cm) | weight(kg) | number | |
---|---|---|---|
count | 7.000000 | 7.000000 | 7.000000 |
mean | 56.957143 | 1928.571429 | 6.857143 |
std | 8.946667 | 1239.239398 | 1.676163 |
min | 48.700000 | 500.000000 | 4.000000 |
25% | 50.350000 | 1000.000000 | 6.000000 |
50% | 52.000000 | 2000.000000 | 7.000000 |
75% | 62.650000 | 2500.000000 | 8.000000 |
max | 72.000000 | 4000.000000 | 9.000000 |
load_pipeline
¶load_pipline().head()
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 9 | 0 |
2 | 5 | 0 | 1 | 2 | 12 | 0 | 5 | 0 | 0 | 2 |
3 | 6 | 1 | 0 | 6 | 0 | 7 | 0 | 0 | 0 | 0 |
4 | 0 | 2 | 6 | 0 | 8 | 0 | 4 | 0 | 0 | 3 |
5 | 0 | 12 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 |
load_pipline().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 1 to 10 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 1 10 non-null int32 1 2 10 non-null int32 2 3 10 non-null int32 3 4 10 non-null int32 4 5 10 non-null int32 5 6 10 non-null int32 6 7 10 non-null int32 7 8 10 non-null int32 8 9 10 non-null int32 9 10 10 non-null int32 dtypes: int32(10) memory usage: 532.0 bytes
load_petroleum
¶load_petroleum().head()
a | b | c | d | e | f | g | h | i | j | |
---|---|---|---|---|---|---|---|---|---|---|
a | 0 | 6 | 8 | 3 | 0 | 3 | 0 | 0 | 0 | 0 |
b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 10 | 5 |
c | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 3 | 0 |
d | 0 | 0 | 0 | 0 | 3 | 0 | 6 | 4 | 0 | 0 |
e | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 |
load_petroleum().info()
<class 'pandas.core.frame.DataFrame'> Index: 10 entries, a to j Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 10 non-null int32 1 b 10 non-null int32 2 c 10 non-null int32 3 d 10 non-null int32 4 e 10 non-null int32 5 f 10 non-null int32 6 g 10 non-null int32 7 h 10 non-null int32 8 i 10 non-null int32 9 j 10 non-null int32 dtypes: int32(10) memory usage: 480.0+ bytes
load_petroleum().describe()
a | b | c | d | e | f | g | h | i | j | |
---|---|---|---|---|---|---|---|---|---|---|
count | 10.0 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.00000 | 10.00000 | 10.000000 |
mean | 0.0 | 1.300000 | 0.800000 | 0.700000 | 1.000000 | 0.700000 | 0.700000 | 1.50000 | 1.90000 | 1.300000 |
std | 0.0 | 2.750757 | 2.529822 | 1.494434 | 2.309401 | 1.494434 | 1.888562 | 2.54951 | 3.17805 | 1.946507 |
min | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 |
25% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 |
50% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 |
75% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 3.00000 | 3.00000 | 2.500000 |
max | 0.0 | 7.000000 | 8.000000 | 4.000000 | 7.000000 | 4.000000 | 6.000000 | 7.00000 | 10.00000 | 5.000000 |
load_petroleum_weights
¶load_petroleum_weights().head()
a | b | c | d | e | f | g | h | i | j | |
---|---|---|---|---|---|---|---|---|---|---|
a | 0 | 3 | 5 | 7 | 0 | 1 | 0 | 0 | 0 | 0 |
b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 6 | 2 |
c | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 1 | 0 |
d | 0 | 0 | 0 | 0 | 3 | 0 | 6 | 4 | 0 | 0 |
e | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 6 |
load_petroleum_weights().info()
<class 'pandas.core.frame.DataFrame'> Index: 10 entries, a to j Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 10 non-null int32 1 b 10 non-null int32 2 c 10 non-null int32 3 d 10 non-null int32 4 e 10 non-null int32 5 f 10 non-null int32 6 g 10 non-null int32 7 h 10 non-null int32 8 i 10 non-null int32 9 j 10 non-null int32 dtypes: int32(10) memory usage: 480.0+ bytes
load_petroleum_weights().describe()
a | b | c | d | e | f | g | h | i | j | |
---|---|---|---|---|---|---|---|---|---|---|
count | 10.0 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 | 10.000000 |
mean | 0.0 | 0.400000 | 0.500000 | 1.000000 | 1.000000 | 0.300000 | 0.700000 | 1.700000 | 1.200000 | 1.400000 |
std | 0.0 | 0.966092 | 1.581139 | 2.309401 | 2.309401 | 0.674949 | 1.888562 | 3.056868 | 2.097618 | 2.065591 |
min | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
50% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
75% | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 3.000000 | 1.000000 | 2.750000 |
max | 0.0 | 3.000000 | 5.000000 | 7.000000 | 7.000000 | 2.000000 | 6.000000 | 9.000000 | 6.000000 | 6.000000 |
load_hospital_efficiency
¶load_hospital_efficiency().head()
全职非主治医师 | 提供的经费(千元) | 可提供的住院床位数(千张) | 开诊日的药物治疗(千次) | 开诊日的非药物治疗(千次) | 接受过培训的护士数目 | 接受过培训的实习医师数目 | |
---|---|---|---|---|---|---|---|
普通医院 | 285.20 | 123.8 | 106.72 | 48.14 | 43.10 | 253.0 | 41.0 |
学校医院 | 162.30 | 128.7 | 64.21 | 34.62 | 27.11 | 148.0 | 27.0 |
乡镇医院 | 275.70 | 348.5 | 104.10 | 36.72 | 45.98 | 175.0 | 23.0 |
国家医院 | 210.14 | 154.1 | 104.04 | 33.16 | 56.46 | 160.0 | 84.0 |
load_hospital_efficiency().info()
<class 'pandas.core.frame.DataFrame'> Index: 4 entries, 普通医院 to 国家医院 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 全职非主治医师 4 non-null float64 1 提供的经费(千元) 4 non-null float64 2 可提供的住院床位数(千张) 4 non-null float64 3 开诊日的药物治疗(千次) 4 non-null float64 4 开诊日的非药物治疗(千次) 4 non-null float64 5 接受过培训的护士数目 4 non-null float64 6 接受过培训的实习医师数目 4 non-null float64 dtypes: float64(7) memory usage: 256.0+ bytes
load_hospital_efficiency().describe()
全职非主治医师 | 提供的经费(千元) | 可提供的住院床位数(千张) | 开诊日的药物治疗(千次) | 开诊日的非药物治疗(千次) | 接受过培训的护士数目 | 接受过培训的实习医师数目 | |
---|---|---|---|---|---|---|---|
count | 4.000000 | 4.000000 | 4.000000 | 4.000000 | 4.000000 | 4.000000 | 4.00000 |
mean | 233.335000 | 188.775000 | 94.767500 | 38.160000 | 43.162500 | 184.000000 | 43.75000 |
std | 57.933153 | 107.308259 | 20.409948 | 6.811892 | 12.144251 | 47.307505 | 27.92102 |
min | 162.300000 | 123.800000 | 64.210000 | 33.160000 | 27.110000 | 148.000000 | 23.00000 |
25% | 198.180000 | 127.475000 | 94.082500 | 34.255000 | 39.102500 | 157.000000 | 26.00000 |
50% | 242.920000 | 141.400000 | 104.070000 | 35.670000 | 44.540000 | 167.500000 | 34.00000 |
75% | 278.075000 | 202.700000 | 104.755000 | 39.575000 | 48.600000 | 194.500000 | 51.75000 |
max | 285.200000 | 348.500000 | 106.720000 | 48.140000 | 56.460000 | 253.000000 | 84.00000 |
load_aircraft_efficiency
¶load_aircraft_efficiency().head()
Aircraft | Fuel | Employee | Passenger | Freight | |
---|---|---|---|---|---|
A | 109 | 392 | 8259 | 23756 | 870 |
B | 115 | 381 | 9628 | 24183 | 1359 |
C | 767 | 2673 | 70923 | 163483 | 12449 |
D | 90 | 282 | 9683 | 10370 | 509 |
E | 461 | 1608 | 40630 | 99047 | 3726 |
load_aircraft_efficiency().info()
<class 'pandas.core.frame.DataFrame'> Index: 13 entries, A to M Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Aircraft 13 non-null int32 1 Fuel 13 non-null int32 2 Employee 13 non-null int32 3 Passenger 13 non-null int32 4 Freight 13 non-null int32 dtypes: int32(5) memory usage: 364.0+ bytes
load_aircraft_efficiency().describe()
Aircraft | Fuel | Employee | Passenger | Freight | |
---|---|---|---|---|---|
count | 13.000000 | 13.000000 | 13.000000 | 13.000000 | 13.000000 |
mean | 345.538462 | 1162.846154 | 27757.307692 | 69351.846154 | 4540.769231 |
std | 244.196511 | 901.954715 | 20772.814311 | 53252.863729 | 4211.595287 |
min | 81.000000 | 75.000000 | 7115.000000 | 10370.000000 | 509.000000 |
25% | 109.000000 | 392.000000 | 9628.000000 | 23756.000000 | 870.000000 |
50% | 423.000000 | 1217.000000 | 29124.000000 | 74106.000000 | 3726.000000 |
75% | 547.000000 | 1722.000000 | 40630.000000 | 99636.000000 | 6597.000000 |
max | 767.000000 | 2673.000000 | 70923.000000 | 163483.000000 | 12449.000000 |
load_shanghaicases
¶load_shanghaicases().head()
新增确诊 | 新增无症状 | 无症状者转归 | 隔离管控确诊 | 隔离管控无症状 | |
---|---|---|---|---|---|
0 | 1.0 | 1.0 | NaN | NaN | 1.0 |
1 | 3.0 | 5.0 | NaN | NaN | 5.0 |
2 | 2.0 | 14.0 | NaN | NaN | 14.0 |
3 | 3.0 | 16.0 | NaN | NaN | 15.0 |
4 | 0.0 | 28.0 | NaN | NaN | 28.0 |
load_shanghaicases().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 42 entries, 0 to 41 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 新增确诊 42 non-null float64 1 新增无症状 42 non-null float64 2 无症状者转归 19 non-null float64 3 隔离管控确诊 33 non-null float64 4 隔离管控无症状 42 non-null float64 dtypes: float64(5) memory usage: 1.8 KB
load_shanghaicases().describe()
新增确诊 | 新增无症状 | 无症状者转归 | 隔离管控确诊 | 隔离管控无症状 | |
---|---|---|---|---|---|
count | 42.000000 | 42.000000 | 19.000000 | 33.000000 | 42.000000 |
mean | 198.142857 | 5273.642857 | 81.789474 | 70.636364 | 4981.142857 |
std | 312.025450 | 7965.607756 | 124.857509 | 144.689715 | 7743.999164 |
min | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 1.000000 |
25% | 4.000000 | 76.500000 | 7.000000 | 4.000000 | 61.750000 |
50% | 30.000000 | 921.000000 | 20.000000 | 10.000000 | 813.500000 |
75% | 319.250000 | 5952.250000 | 72.000000 | 27.000000 | 5334.250000 |
max | 1015.000000 | 25173.000000 | 420.000000 | 564.000000 | 24230.000000 |
load_population
¶load_population().head()
年份 | 人口 | |
---|---|---|
0 | 1790 | 3.9 |
1 | 1800 | 5.3 |
2 | 1810 | 7.2 |
3 | 1820 | 9.6 |
4 | 1830 | 12.9 |
load_population().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 22 entries, 0 to 21 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 年份 22 non-null int64 1 人口 22 non-null float64 dtypes: float64(1), int64(1) memory usage: 480.0 bytes
load_population().describe()
年份 | 人口 | |
---|---|---|
count | 22.000000 | 22.000000 |
mean | 1895.000000 | 94.772727 |
std | 64.935866 | 87.506768 |
min | 1790.000000 | 3.900000 |
25% | 1842.500000 | 18.625000 |
50% | 1895.000000 | 69.450000 |
75% | 1947.500000 | 145.950000 |
max | 2000.000000 | 281.400000 |
load_yeast
¶load_yeast().head()
time | number | |
---|---|---|
0 | 0 | 9.6 |
1 | 1 | 18.3 |
2 | 2 | 29.0 |
3 | 3 | 47.2 |
4 | 4 | 71.1 |
load_yeast().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 19 entries, 0 to 18 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 time 19 non-null int64 1 number 19 non-null float64 dtypes: float64(1), int64(1) memory usage: 432.0 bytes
load_yeast().describe()
time | number | |
---|---|---|
count | 19.000000 | 19.000000 |
mean | 9.000000 | 372.857895 |
std | 5.627314 | 264.569158 |
min | 0.000000 | 9.600000 |
25% | 4.500000 | 95.100000 |
50% | 9.000000 | 441.000000 |
75% | 13.500000 | 635.100000 |
max | 18.000000 | 661.800000 |
load_restaurant
¶load_restaurant().head()
day | sales | |
---|---|---|
1 | 1 | 3023 |
2 | 2 | 3039 |
3 | 3 | 3056 |
4 | 4 | 3138 |
5 | 5 | 3188 |
load_restaurant().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 37 entries, 1 to 37 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 day 37 non-null int32 1 sales 37 non-null int32 dtypes: int32(2) memory usage: 428.0 bytes
load_restaurant().describe()
day | sales | |
---|---|---|
count | 37.000000 | 37.000000 |
mean | 19.000000 | 3542.486486 |
std | 10.824355 | 543.918633 |
min | 1.000000 | 2859.000000 |
25% | 10.000000 | 3142.000000 |
50% | 19.000000 | 3421.000000 |
75% | 28.000000 | 3707.000000 |
max | 37.000000 | 4817.000000 |
load_titanic
¶load_titanic().head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3.0 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | nan | S |
1 | 2 | 1 | 1.0 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3.0 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | nan | S |
3 | 4 | 1 | 1.0 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3.0 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | nan | S |
load_titanic().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 80 entries, 0 to 79 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 PassengerId 80 non-null int32 1 Survived 80 non-null int32 2 Pclass 80 non-null float64 3 Name 80 non-null object 4 Sex 80 non-null object 5 Age 61 non-null float64 6 SibSp 80 non-null float64 7 Parch 80 non-null float64 8 Ticket 80 non-null object 9 Fare 80 non-null float64 10 Cabin 80 non-null object 11 Embarked 80 non-null object dtypes: float64(5), int32(2), object(5) memory usage: 7.0+ KB
load_titanic().describe()
PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare | |
---|---|---|---|---|---|---|---|
count | 80.0000 | 80.000000 | 80.00000 | 61.000000 | 80.000000 | 80.000000 | 80.000000 |
mean | 40.5000 | 0.425000 | 2.41250 | 26.366066 | 0.787500 | 0.437500 | 28.482291 |
std | 23.2379 | 0.497462 | 0.80652 | 15.365874 | 1.229323 | 0.991658 | 36.336522 |
min | 1.0000 | 0.000000 | 1.00000 | 0.830000 | 0.000000 | 0.000000 | 7.225000 |
25% | 20.7500 | 0.000000 | 2.00000 | 17.000000 | 0.000000 | 0.000000 | 8.050000 |
50% | 40.5000 | 0.000000 | 3.00000 | 26.000000 | 0.000000 | 0.000000 | 15.750000 |
75% | 60.2500 | 1.000000 | 3.00000 | 35.000000 | 1.000000 | 0.000000 | 31.303125 |
max | 80.0000 | 1.000000 | 3.00000 | 66.000000 | 5.000000 | 5.000000 | 263.000000 |
load_golf
¶load_golf().head()
Outlook | Temperature | Humidity | Windy | Play Golf | |
---|---|---|---|---|---|
0 | Rainy | Hot | High | False | No |
1 | Rainy | Hot | High | True | No |
2 | Overcast | Hot | High | False | Yes |
3 | Sunny | Mild | High | False | Yes |
4 | Sunny | Cool | Normal | False | Yes |
load_golf().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 14 entries, 0 to 13 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Outlook 14 non-null object 1 Temperature 14 non-null object 2 Humidity 14 non-null object 3 Windy 14 non-null object 4 Play Golf 14 non-null object dtypes: object(5) memory usage: 688.0+ bytes
load_golf().describe()
Outlook | Temperature | Humidity | Windy | Play Golf | |
---|---|---|---|---|---|
count | 14 | 14 | 14 | 14 | 14 |
unique | 3 | 3 | 2 | 2 | 2 |
top | Rainy | Mild | High | False | Yes |
freq | 5 | 6 | 7 | 8 | 9 |
load_oil_field
¶load_oil_field().head()
时间 | 月产油量/万吨 | 月产水量/万吨 | 月注水量/万吨 | 地层压力/MPa | |
---|---|---|---|---|---|
0 | 94.02 | 7.123 | 0.796 | 13.108 | 27.475 |
1 | 94.03 | 7.994 | 0.832 | 12.334 | 27.473 |
2 | 94.04 | 8.272 | 0.917 | 12.216 | 27.490 |
3 | 94.05 | 7.960 | 0.976 | 12.201 | 27.500 |
4 | 94.06 | 7.147 | 1.075 | 12.132 | 27.510 |
load_oil_field().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 13 entries, 0 to 12 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 时间 13 non-null float64 1 月产油量/万吨 13 non-null float64 2 月产水量/万吨 13 non-null float64 3 月注水量/万吨 13 non-null float64 4 地层压力/MPa 13 non-null float64 dtypes: float64(5) memory usage: 648.0 bytes
load_oil_field().describe()
时间 | 月产油量/万吨 | 月产水量/万吨 | 月注水量/万吨 | 地层压力/MPa | |
---|---|---|---|---|---|
count | 13.000000 | 13.000000 | 13.000000 | 13.000000 | 13.00000 |
mean | 94.080000 | 6.780154 | 1.220538 | 11.659462 | 27.54300 |
std | 0.038944 | 0.946614 | 0.283479 | 1.062462 | 0.05158 |
min | 94.020000 | 5.197000 | 0.796000 | 9.176000 | 27.47300 |
25% | 94.050000 | 6.254000 | 0.976000 | 11.143000 | 27.50000 |
50% | 94.080000 | 6.858000 | 1.281000 | 11.990000 | 27.54200 |
75% | 94.110000 | 7.147000 | 1.432000 | 12.216000 | 27.58400 |
max | 94.140000 | 8.272000 | 1.611000 | 13.108000 | 27.63000 |
load_passagers_flow
¶load_passagers_flow().head()
人口数量/万人 | 机动车数量/万辆 | 公路面积/万平方千米 | 客运量/万人 | 货运量/万吨 | |
---|---|---|---|---|---|
年份 | |||||
1990 | 20.55 | 0.60 | 0.09 | 5126.0 | 1237.0 |
1991 | 22.44 | 0.75 | 0.11 | 6217.0 | 1379.0 |
1992 | 25.37 | 0.85 | 0.11 | 7730.0 | 1385.0 |
1993 | 27.13 | 0.90 | 0.14 | 9145.0 | 1399.0 |
1994 | 29.45 | 1.05 | 0.20 | 10460.0 | 1663.0 |
load_passagers_flow().info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 20 entries, 1990 to 2009 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 人口数量/万人 20 non-null float64 1 机动车数量/万辆 20 non-null float64 2 公路面积/万平方千米 20 non-null float64 3 客运量/万人 20 non-null float64 4 货运量/万吨 20 non-null float64 dtypes: float64(5) memory usage: 960.0 bytes
load_passagers_flow().describe()
人口数量/万人 | 机动车数量/万辆 | 公路面积/万平方千米 | 客运量/万人 | 货运量/万吨 | |
---|---|---|---|---|---|
count | 20.000000 | 20.000000 | 20.000000 | 20.000000 | 20.000000 |
mean | 39.634500 | 1.887500 | 0.378500 | 21108.750000 | 9401.400000 |
std | 12.508626 | 0.790881 | 0.212188 | 12346.831479 | 7402.108899 |
min | 20.550000 | 0.600000 | 0.090000 | 5126.000000 | 1237.000000 |
25% | 29.937500 | 1.275000 | 0.222500 | 11155.250000 | 1701.250000 |
50% | 38.610000 | 2.000000 | 0.350000 | 19663.000000 | 9730.000000 |
75% | 48.697500 | 2.525000 | 0.567500 | 27190.750000 | 14180.500000 |
max | 60.630000 | 3.100000 | 0.790000 | 43462.000000 | 21804.000000 |
load_adult
¶load_adult().head()
sex | age | educ | hours | income_more_50K | |
---|---|---|---|---|---|
0 | Male | 39 | 13 | 40 | 0 |
1 | Male | 50 | 13 | 13 | 0 |
2 | Male | 38 | 9 | 40 | 0 |
3 | Male | 53 | 7 | 40 | 0 |
4 | Female | 28 | 13 | 40 | 0 |
load_adult().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 sex 100 non-null object 1 age 100 non-null int32 2 educ 100 non-null int32 3 hours 100 non-null int32 4 income_more_50K 100 non-null int32 dtypes: int32(4), object(1) memory usage: 2.5+ KB
load_adult().describe()
age | educ | hours | income_more_50K | |
---|---|---|---|---|
count | 100.000000 | 100.000000 | 100.000000 | 100.000000 |
mean | 38.390000 | 10.220000 | 41.250000 | 0.250000 |
std | 12.198605 | 2.787345 | 11.539458 | 0.435194 |
min | 18.000000 | 3.000000 | 2.000000 | 0.000000 |
25% | 29.750000 | 9.000000 | 40.000000 | 0.000000 |
50% | 37.500000 | 10.000000 | 40.000000 | 0.000000 |
75% | 48.000000 | 13.000000 | 45.000000 | 0.250000 |
max | 79.000000 | 16.000000 | 80.000000 | 1.000000 |
load_cement
¶load_cement().head()
x1 | x2 | y | |
---|---|---|---|
0 | 7.0 | 26.0 | 78.5 |
1 | 1.0 | 29.0 | 74.3 |
2 | 11.0 | 56.0 | 104.3 |
3 | 11.0 | 31.0 | 87.6 |
4 | 7.0 | 52.0 | 95.9 |
load_cement().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 13 entries, 0 to 12 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 x1 13 non-null float64 1 x2 13 non-null float64 2 y 13 non-null float64 dtypes: float64(3) memory usage: 440.0 bytes
load_cement().describe()
x1 | x2 | y | |
---|---|---|---|
count | 13.000000 | 13.000000 | 13.000000 |
mean | 7.461538 | 48.153846 | 95.423077 |
std | 5.882394 | 15.560881 | 15.043723 |
min | 1.000000 | 26.000000 | 72.500000 |
25% | 2.000000 | 31.000000 | 83.800000 |
50% | 7.000000 | 52.000000 | 95.900000 |
75% | 11.000000 | 56.000000 | 109.200000 |
max | 21.000000 | 71.000000 | 115.900000 |
load_economics
¶load_economics().head()
国内总产值 | 存储量 | 消费量 | 进口总额 | |
---|---|---|---|---|
0 | 149.3 | 4.2 | 108.1 | 15.9 |
1 | 171.5 | 4.1 | 114.8 | 16.4 |
2 | 175.5 | 3.1 | 123.2 | 19.0 |
3 | 180.8 | 3.1 | 126.9 | 19.1 |
4 | 190.7 | 1.1 | 132.1 | 18.8 |
load_economics().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 11 entries, 0 to 10 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 国内总产值 11 non-null float64 1 存储量 11 non-null float64 2 消费量 11 non-null float64 3 进口总额 11 non-null float64 dtypes: float64(4) memory usage: 480.0 bytes
load_economics().describe()
国内总产值 | 存储量 | 消费量 | 进口总额 | |
---|---|---|---|---|
count | 11.000000 | 11.000000 | 11.000000 | 11.000000 |
mean | 198.309091 | 3.300000 | 139.736364 | 21.890909 |
std | 27.908904 | 1.649242 | 20.634402 | 4.543667 |
min | 149.300000 | 0.700000 | 108.100000 | 15.900000 |
25% | 178.150000 | 2.150000 | 125.050000 | 18.900000 |
50% | 202.100000 | 3.100000 | 137.700000 | 20.400000 |
75% | 219.250000 | 4.600000 | 158.200000 | 26.400000 |
max | 239.000000 | 5.600000 | 167.600000 | 28.100000 |
load_car
¶load_car()
城镇居民家庭人均可支配收入/元 | 全国城镇人口/亿人 | 全国汽车产量/万量 | 全国公路长度/万公里 | 中国私人轿车拥有量/万辆 | |
---|---|---|---|---|---|
1994 | 3496.2 | 3.43 | 136.69 | 111.78 | 205.42 |
1995 | 4283.0 | 3.52 | 145.27 | 115.70 | 249.96 |
1996 | 4838.9 | 3.73 | 147.52 | 118.58 | 289.67 |
1997 | 5160.3 | 3.94 | 158.25 | 122.64 | 358.36 |
1998 | 5425.1 | 4.16 | 163.00 | 127.85 | 423.65 |
1999 | 5854.0 | 4.37 | 183.20 | 135.17 | 533.88 |
2000 | 6280.0 | 4.59 | 207.00 | 140.27 | 625.33 |
2001 | 6859.6 | 4.81 | 234.17 | 169.80 | 770.78 |
2002 | 7702.8 | 5.02 | 325.10 | 176.52 | 968.98 |
load_car().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9 entries, 1994 to 2002 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 城镇居民家庭人均可支配收入/元 9 non-null float64 1 全国城镇人口/亿人 9 non-null float64 2 全国汽车产量/万量 9 non-null float64 3 全国公路长度/万公里 9 non-null float64 4 中国私人轿车拥有量/万辆 9 non-null float64 dtypes: float64(5) memory usage: 492.0 bytes
load_car().describe()
城镇居民家庭人均可支配收入/元 | 全国城镇人口/亿人 | 全国汽车产量/万量 | 全国公路长度/万公里 | 中国私人轿车拥有量/万辆 | |
---|---|---|---|---|---|
count | 9.000000 | 9.000000 | 9.000000 | 9.000000 | 9.000000 |
mean | 5544.433333 | 4.174444 | 188.911111 | 135.367778 | 491.781111 |
std | 1297.649310 | 0.566240 | 60.116460 | 23.309606 | 257.132957 |
min | 3496.200000 | 3.430000 | 136.690000 | 111.780000 | 205.420000 |
25% | 4838.900000 | 3.730000 | 147.520000 | 118.580000 | 289.670000 |
50% | 5425.100000 | 4.160000 | 163.000000 | 127.850000 | 423.650000 |
75% | 6280.000000 | 4.590000 | 207.000000 | 140.270000 | 625.330000 |
max | 7702.800000 | 5.020000 | 325.100000 | 176.520000 | 968.980000 |
load_house
¶load_house()
家庭年收入/万元 | 签订意向书人数/人 | 实际购房人数/人 | |
---|---|---|---|
0 | 1.5 | 25.0 | 8.0 |
1 | 2.5 | 32.0 | 13.0 |
2 | 3.5 | 58.0 | 26.0 |
3 | 4.5 | 52.0 | 22.0 |
4 | 5.5 | 43.0 | 20.0 |
5 | 6.5 | 39.0 | 22.0 |
6 | 7.5 | 28.0 | 16.0 |
7 | 8.5 | 21.0 | 12.0 |
8 | 9.5 | 15.0 | 10.0 |
load_house().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9 entries, 0 to 8 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 家庭年收入/万元 9 non-null float64 1 签订意向书人数/人 9 non-null float64 2 实际购房人数/人 9 non-null float64 dtypes: float64(3) memory usage: 344.0 bytes
load_house().describe()
家庭年收入/万元 | 签订意向书人数/人 | 实际购房人数/人 | |
---|---|---|---|
count | 9.000000 | 9.000000 | 9.000000 |
mean | 5.500000 | 34.777778 | 16.555556 |
std | 2.738613 | 14.368175 | 6.227181 |
min | 1.500000 | 15.000000 | 8.000000 |
25% | 3.500000 | 25.000000 | 12.000000 |
50% | 5.500000 | 32.000000 | 16.000000 |
75% | 7.500000 | 43.000000 | 22.000000 |
max | 9.500000 | 58.000000 | 26.000000 |
load_loan
¶load_loan()
指标1 | 指标2 | 指标3 | 是否贷款 | |
---|---|---|---|---|
0 | -62.3 | -89.5 | 1.7 | 0.0 |
1 | 3.3 | -3.5 | 1.1 | 0.0 |
2 | -120.8 | -103.2 | 2.5 | 0.0 |
3 | -18.1 | -28.8 | 1.1 | 0.0 |
4 | -3.8 | -50.6 | 0.9 | 0.0 |
5 | -61.2 | -56.2 | 1.7 | 0.0 |
6 | -20.3 | -17.4 | 1.0 | 0.0 |
7 | -194.5 | -25.8 | 0.5 | 0.0 |
8 | 20.8 | -4.3 | 1.0 | 0.0 |
9 | -106.1 | -22.9 | 1.5 | 0.0 |
10 | 43.0 | 16.4 | 1.3 | 1.0 |
11 | 47.0 | 16.0 | 1.9 | 1.0 |
12 | -3.3 | 4.0 | 2.7 | 1.0 |
13 | 35.0 | 20.8 | 1.9 | 1.0 |
14 | 46.7 | 12.6 | 0.9 | 1.0 |
15 | 20.8 | 12.5 | 2.4 | 1.0 |
16 | 33.0 | 23.6 | 1.5 | 1.0 |
17 | 26.1 | 10.4 | 2.1 | 1.0 |
18 | 68.6 | 13.8 | 1.6 | 1.0 |
19 | 37.3 | 33.4 | 3.5 | 1.0 |
load_loan().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 20 entries, 0 to 19 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 指标1 20 non-null float64 1 指标2 20 non-null float64 2 指标3 20 non-null float64 3 是否贷款 20 non-null float64 dtypes: float64(4) memory usage: 768.0 bytes
load_loan().describe()
指标1 | 指标2 | 指标3 | 是否贷款 | |
---|---|---|---|---|
count | 20.000000 | 20.000000 | 20.000000 | 20.000000 |
mean | -10.440000 | -11.935000 | 1.640000 | 0.500000 |
std | 67.316811 | 37.796634 | 0.732982 | 0.512989 |
min | -194.500000 | -103.200000 | 0.500000 | 0.000000 |
25% | -30.525000 | -26.550000 | 1.075000 | 0.000000 |
50% | 12.050000 | 0.250000 | 1.550000 | 0.500000 |
75% | 35.575000 | 14.350000 | 1.950000 | 1.000000 |
max | 68.600000 | 33.400000 | 3.500000 | 1.000000 |
load_height_weight
¶load_height_weight()
height/cm | weight/kg | |
---|---|---|
0 | 172 | 75 |
1 | 169 | 55 |
2 | 169 | 64 |
3 | 171 | 65 |
4 | 167 | 47 |
... | ... | ... |
95 | 177 | 64 |
96 | 184 | 70 |
97 | 166 | 49 |
98 | 171 | 71 |
99 | 170 | 59 |
100 rows × 2 columns
load_height_weight().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 height/cm 100 non-null int32 1 weight/kg 100 non-null int32 dtypes: int32(2) memory usage: 928.0 bytes
load_height_weight().describe()
height/cm | weight/kg | |
---|---|---|
count | 100.000000 | 100.000000 |
mean | 170.250000 | 61.270000 |
std | 5.401786 | 6.892911 |
min | 155.000000 | 47.000000 |
25% | 167.000000 | 57.000000 |
50% | 170.000000 | 62.000000 |
75% | 173.000000 | 65.250000 |
max | 186.000000 | 77.000000 |
load_activity
¶load_activity()
Sleep | Icecream | Run | |
---|---|---|---|
Sleep | 0.2 | 0.6 | 0.2 |
Icecream | 0.1 | 0.6 | 0.3 |
Run | 0.2 | 0.7 | 0.1 |
load_activity().info()
<class 'pandas.core.frame.DataFrame'> Index: 3 entries, Sleep to Run Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Sleep 3 non-null float64 1 Icecream 3 non-null float64 2 Run 3 non-null float64 dtypes: float64(3) memory usage: 96.0+ bytes
load_activity().describe()
Sleep | Icecream | Run | |
---|---|---|---|
count | 3.000000 | 3.000000 | 3.00 |
mean | 0.166667 | 0.633333 | 0.20 |
std | 0.057735 | 0.057735 | 0.10 |
min | 0.100000 | 0.600000 | 0.10 |
25% | 0.150000 | 0.600000 | 0.15 |
50% | 0.200000 | 0.600000 | 0.20 |
75% | 0.200000 | 0.650000 | 0.25 |
max | 0.200000 | 0.700000 | 0.30 |
load_party
¶load_party()
工党 | 保守党 | 自由党 | |
---|---|---|---|
工党 | 0.5 | 0.4 | 0.1 |
保守党 | 0.7 | 0.2 | 0.1 |
自由党 | 0.2 | 0.4 | 0.4 |
load_party().info()
<class 'pandas.core.frame.DataFrame'> Index: 3 entries, 工党 to 自由党 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 工党 3 non-null float64 1 保守党 3 non-null float64 2 自由党 3 non-null float64 dtypes: float64(3) memory usage: 96.0+ bytes
load_party().describe()
工党 | 保守党 | 自由党 | |
---|---|---|---|
count | 3.000000 | 3.000000 | 3.000000 |
mean | 0.466667 | 0.333333 | 0.200000 |
std | 0.251661 | 0.115470 | 0.173205 |
min | 0.200000 | 0.200000 | 0.100000 |
25% | 0.350000 | 0.300000 | 0.100000 |
50% | 0.500000 | 0.400000 | 0.100000 |
75% | 0.600000 | 0.400000 | 0.250000 |
max | 0.700000 | 0.400000 | 0.400000 |
load_education
¶load_education()
Junior school | High school | College | |
---|---|---|---|
Junior school | 0.7 | 0.2 | 0.1 |
High school | 0.4 | 0.4 | 0.2 |
College | 0.1 | 0.2 | 0.7 |
load_education().info()
<class 'pandas.core.frame.DataFrame'> Index: 3 entries, Junior school to College Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Junior school 3 non-null float64 1 High school 3 non-null float64 2 College 3 non-null float64 dtypes: float64(3) memory usage: 96.0+ bytes
load_education().describe()
Junior school | High school | College | |
---|---|---|---|
count | 3.00 | 3.000000 | 3.000000 |
mean | 0.40 | 0.266667 | 0.333333 |
std | 0.30 | 0.115470 | 0.321455 |
min | 0.10 | 0.200000 | 0.100000 |
25% | 0.25 | 0.200000 | 0.150000 |
50% | 0.40 | 0.200000 | 0.200000 |
75% | 0.55 | 0.300000 | 0.450000 |
max | 0.70 | 0.400000 | 0.700000 |
load_ted
¶load_ted().head()
comments | duration | event | languages | main_speaker | name | num_speaker | published_date | speaker_occupation | tags | title | views | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4553 | 1164 | TED2006 | 60 | Ken Robinson | Ken Robinson: Do schools kill creativity? | 1 | 1151367060 | Author/educator | ['children', 'creativity', 'culture', 'dance',... | Do schools kill creativity? | 47227110 |
1 | 265 | 977 | TED2006 | 43 | Al Gore | Al Gore: Averting the climate crisis | 1 | 1151367060 | Climate advocate | ['alternative energy', 'cars', 'climate change... | Averting the climate crisis | 3200520 |
2 | 124 | 1286 | TED2006 | 26 | David Pogue | David Pogue: Simplicity sells | 1 | 1151367060 | Technology columnist | ['computers', 'entertainment', 'interface desi... | Simplicity sells | 1636292 |
3 | 200 | 1116 | TED2006 | 35 | Majora Carter | Majora Carter: Greening the ghetto | 1 | 1151367060 | Activist for environmental justice | ['MacArthur grant', 'activism', 'business', 'c... | Greening the ghetto | 1697550 |
4 | 593 | 1190 | TED2006 | 48 | Hans Rosling | Hans Rosling: The best stats you've ever seen | 1 | 1151440680 | Global health expert; data visionary | ['Africa', 'Asia', 'Google', 'demo', 'economic... | The best stats you've ever seen | 12005869 |
load_ted().info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 243 entries, 0 to 242 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 comments 243 non-null int32 1 duration 243 non-null int32 2 event 243 non-null object 3 languages 243 non-null object 4 main_speaker 243 non-null object 5 name 243 non-null object 6 num_speaker 243 non-null object 7 published_date 243 non-null object 8 speaker_occupation 243 non-null object 9 tags 243 non-null object 10 title 243 non-null object 11 views 243 non-null int32 dtypes: int32(3), object(9) memory usage: 20.1+ KB
load_ted().describe()
comments | duration | views | |
---|---|---|---|
count | 243.000000 | 243.000000 | 2.430000e+02 |
mean | 233.115226 | 999.345679 | 2.097025e+06 |
std | 547.555412 | 422.429382 | 4.000388e+06 |
min | 9.000000 | 135.000000 | 8.248800e+04 |
25% | 60.000000 | 845.500000 | 6.721835e+05 |
50% | 108.000000 | 1056.000000 | 1.044185e+06 |
75% | 230.500000 | 1212.000000 | 1.833844e+06 |
max | 6404.000000 | 2678.000000 | 4.722711e+07 |