For office use only	Team Control Number	For office use only
T1	2015005	F1
T2	-15005	F2
T3		F3
T4		F4

2015

The International Mathematical Modeling Challenge (IM ${ }^{2}$ C) Summary Sheet
 (Attach a copy of this page to the front of your solution paper.)

Abstract

Scheduling is an important part of shooting a film. In this paper, we established a model for movie scheduling and implemented a program in Visual Basic which allows the producers to output a detailed schedule by inputting all the Constraints including the available time of movie stars, filming sites and special props.

Looking through the list of factors, we have observed that all these factors can be viewed as one type of Constraints and can be modeled in the same way.

For Question 1, we combined all different types of initial conditions and represented them by matrices. Then we reasonably weighted the Footage Matrices to form the Schedule Matrix, eventually obtaining an optimal schedule.

For Question 2, the only thing we need to do is to apply the altered Constraints as new initial conditions into to the model provided in Question 1, and then generate a new schedule accordingly.

For Question 3, we defined an importance index for each of the Constraints. Through data analysis, statistics and charts we concluded that the most important Constraint is the one with the highest importance index, and it will change based on the different type of the film.

Through the random simulation of the model, we also verified the stability and efficiency of the model, knowing that the average filming time would be under 28-unit time.

Finally, we have analyzed the advantages and disadvantages of the model and proposed two improvements which will optimized the mode further

Key words: Constraints, Matrix, Weight, Schedule, Random Simulation

Contents

1 Problem Description. 3
1.1 Introduction 3
1.2 Origin of the Problem 3
3. Statement of the Symbols 4
4 Assumption. 5
4.1 Preparation 5
4.2 During the Filming 5
4.3 Post-Filming Editing 5
5 Model Establishment and Adjustment 6
5.1 Question 1 6
5.1.1 Determination of the Method 6
5.1.2 Establishment of the Method 6
5.1.3 Examples of the Method 9
5.1.4 Schedule Matrix 10
5.2 Question 2 13
5.2.1 Analyzing Accidents and Adjusting. 13
5.3 Question 3. 14
5.3.1 Example 14
5.3.2 Conclusions 15
6 Analysis of the Model. 15
6.1 Simulation in Real Situations 15
6.2 Random Simulation 16
6.2.1 Simulation. 16
6.2.2 Conclusions 18
7 Advantages, Disadvantages and Improvements 18
7.1 Advantages 18
7.2 Disadvantages 19
7.3 Improvements. 19
8 Reference 19
9 Appendix 20

1 Problem Description

1.1 Introduction

Nowadays, the pace of people's life is getting faster and faster. The fiercely competitive of study and work has caused more and more stress. There is no doubt that watching a movie, as a way of entertainment that is suitable for all ages, has become the one of the best ways for people to relax. The two-hour time is enough for us to temporarily forget the pain or boredom in the reality. However, few people might think of how much time it would cost to produce a movie. While the special effects are spectacular and the scenes are beautiful, the filming of these scenes is never as easy as what you see in the cinema. To produce a successful film, the controlling of every session in filming and achieving the situation with the luck, advances and harmony, is the most important thing, since any session in the filming will impact the movie production schedule and final releasing date. This paper intends to establish a mathematical model to help the producers to solve these problems.

1.2 Origin of the Problem

A large movie production studio requests us to make a filming schedule by building a mathematical model, and to provide examples and test results to convince them of the model's effectiveness.
Question 1:
There are 5 main factors which should be taken into consideration:
i. The schedule of the movie stars;
ii. The available time of the filming sites;
iii. The time for scenery and props to be prepared;
iv. The available time of the special props
v. Some scenes need to be processed by the computer or be filmed after the physical system is finished.

Besides, we should leave enough time for some possible re-filming after the cutting. Question 2:

The model should be able to adjust the schedule when one of the factors changes.
Question 3:
The model mentioned in the Question 1 should be able to indicate the key factor affecting the schedule, which can cause the most serious delay if an accident happens to it.

2 Analysis of the Problem

The key to the question is the arrangement of the filming of various Footages. Since the preparation and the editing is relatively fixed for a certain movie, we should focus on how to arrange the filming order properly.

Question 1: We can view all the factors in the same way and make a Filming Matrix with all the constraints provided including the availability of movie stars, filming sites and special props.

We can then determine the order of filming on certain Footages (at the correct time but not always the first) by appropriately weighting the Footages, and generate the optimal schedule using the VB program implemented according to the model.

Question 2: If any Constraint changes (may be caused by the injury of stars, the changing of the weather on the outdoor scene, and damage of some special props, etc.), we can substitute the altered Constraints into the model in Question 1 we will get a new schedule that will satisfy the new conditions.

Question 3: We defined a universal importance index for every Constraint. Among all the factors, including the movie stars, filming sites and special props, the most important one is the one with the highest importance index.

3. Statement of the Symbols

Symbol	Description	Remark
n	the estimated number of time units for filming	an input value big enough for the filming of the movie
r_{i}	Constraints	
A_{i}	Constraint Matrix	a 0-1 matrix with one row and n
columns		

4 Assumption

4.1 Preparation

i. We assume that the time of preparation is fixed
ii. We assume that the director is familiar with the local weather, and he can avoid the extremely bad weather (such as the rain season) which would influence the outdoor filming too seriously.
iii. We do not take the force majeure (natural disaster like typhoon, flood, hail, or the government act as levying, the society incident, such as strike or riot) into account.

4.2 During the Filming

i. We assume that we can edit the previous Footage while continuing filming.
ii. We assume that the indoor scene can be arranged during the filming of the previous Footage, so the first scene to film cannot be an indoor one.
iii. We assume that during the filming of each Footage the Constraints of it stay the same.
iv. Considering that the director should be always present at the filming site, so only one Footage could be filmed during the same time unit.
v. We assume that the director won't change the script during filming.
vi. We assume that the crews are experienced, so that they can definitely complete a Footage within one time unit.
vii. We don't take the traveling time from one filming site to another (including applying for a visa if in foreign countries) into account.
viii. We assume that only a few stars are restrained by their own schedule, while the others are available at any time.
ix. We don't take the influence of psychological status of the stars into account.
x. We assume the film lasts 100 minutes.
xi. We define that the shooting time needed for each Footage is one time unit.
xii. We assume that the whole movie will be cut into 20 Footages evenly, so each Footage lasts 5 minutes. (In order to calculate more easily, the examples in this paper will only use 7 Footages as an illustration).
xiii. In order to simplify the calculation, we assume that one time unit equals to a week.
xiv. We don't take the time of dressing up into account.
xv . We assume that the availability ration of the indoor scene is quite stable, so here we ignore the influence caused by its changes.

4.3 Post-Filming Editing

i. We assume that the time needed for editing is fixed.
ii. We assume that the time needed to re-film after editing is fixed, since the crews are experienced.

5 Model Establishment and Adjustment

5.1 Question 1

5.1.1 Determination of the Method.

By observing the question, the requirement is that when every Constraint is known, we need to make a detailed schedule in order to inform the director.

Here are the initial conditions:
i. The number of movie stars (The actors/actresses who cannot join the shooting in a certain period of time due to their own schedule.).
ii. The available time of each movie star.
iii. The number of filming sites (including indoor scenes and outdoor ones)
iv. The available time of each filming site.
v. The number of special props.
vi. The available time of each special prop.
vii. The number of Footages
viii. The Constraints needed in each Footage.

5.1.2 Establishment of the Method

5.1.2.1 Definition

i. Constraint Matrix

We see movie stars, filming sites and special props as Constraints and call them
$r_{1}, r_{2}, \ldots, r_{m}$
Define $A_{r_{i}}=\left(a_{r_{i} 1}, a_{r_{i} 2}, \ldots, a_{r_{i}}\right)$ as the Constraint Matrix,
in which

$$
a_{r i j}=\left\{\begin{array}{lc}
1 & \text { Constraint } r_{i} \text { can be shot in week } \mathrm{j} \\
0 & \text { Constraint } r_{i} \text { cannot be shot in week } \mathrm{j}
\end{array} \quad i=1,2,3, \ldots, m \quad j=1,2,3, \ldots, n\right.
$$

ii. Footage-Constraint Set

Suppose that the Constraints of every Footage is $r_{k 1}, r_{k 2}, \ldots, r_{k q_{k}}$
Then define $F_{k}=\left\{r_{k 1}, r_{k 2}, \ldots, r_{k q_{k}}\right\}$ as a Footage-Constraint Set
In which $r_{k 1}, r_{k 2}, \ldots, r_{k q_{k}} \in\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$
iii. Footage Matrix

Define $B_{k}=\left(b_{k 1}, b_{k 2}, \ldots, n_{k n}\right)$ as the Footage Matrix
In which
$b_{k h}=\left\{\begin{array}{l}1 \\ \quad \text { Footage } k \text { can be shot in the week } \mathrm{h} \\ 0\end{array} \quad\right.$ Footage k cannot be shot in the week h $\quad k=1,2,3, \ldots, p \quad h=1,2,3, \ldots, n \mathrm{~A}$
$b_{k h}=\prod_{t=1}^{q_{k}} a_{r_{k} h}$
iv. Filming Matrix

Define $C=\left(\begin{array}{ccc}\mathrm{b}_{11} & \ldots & \mathrm{~b}_{1 \mathrm{n}} \\ \ldots & \ldots & \ldots \\ \mathrm{b}_{\mathrm{p} 1} & \ldots & \mathrm{~b}_{\mathrm{pn}}\end{array}\right) \rightarrow B_{1}$ ($\rightarrow B_{k}$ as Filming Matrix. It is a 0-1 matrix formed by arranging the p Footage Matrices from top down.

v. Schedule Matrix

The requirement is to choose '1's from the Filming Matrix in a way that there's one and only one ' 1 ' chosen in each row and at most one ' 1 ' in each column.

The Schedule Matrix should be a matrix with one rows and n columns, and the time needed for filming a complete movie is the position of the last non-zero element in the matrix.

We define $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ as the Schedule Matrix. $e_{j}=\left\{\begin{array}{ll}k & \text { Footage } k \text { is to be shot at the week } \mathrm{j} \\ 0 & \text { Nothing is to be shot at the week } \mathrm{j}\end{array} \quad j=1,2, \ldots, n \quad k \in\{1,2, \ldots, p\}\right.$

5.1.2.2 Rationality Explanations

i. Constraint Matrix

We represent the available time of movie stars (or filming sites or special props) as a $0-1$ matrix in which every element represents the availability of a movie star (or filming sites or special props) in a particular week. For example, ($1,1,1,0,1,1,1,1$) shows a particular star is available in the week $1,2,3,5,6,7$, and 8 .

As we can see clearly, all movie stars, filming sites and special props can be represented in the same way, and we call them Constraints as a whole.
For example:
Star $1\left(\right.$ Constraint 1) $A_{r_{1}}=(1,1,1,0,1,1,1,1)$
Star $2\left(\right.$ Constraint 2) $A_{r_{2}}=(0,1,1,1,0,1,1,1)$
Star 3 (Constraint 3) $A_{r_{3}}=(1,0,0,1,1,1,1,0)$
Outdoor scene (Constraint 4) $A_{r_{4}}=(1,1,1,0,1,0,1,1)$
Indoor scene (Constraint 5) $A_{r_{5}}=(0,0,1,0,1,1,1,1)$
Special prop (Constraint 6) $A_{r_{6}}=(0,0,1,0,1,0,1,0)$
(Considering that when the movie first start filming, the setting of the indoor scene may have not been completed yet, so in Constraint 5 the first week is set to be ' 0 '. e.g. $\boldsymbol{A}_{\mathrm{r} 5}$)
ii. Footage-Constraint Set

A certain Footage will have its corresponding Constraints and during filming of this certain Footage, the Constraints will not be changed.
For example
Suppose that the shooting of Footage 2 needs movie star 2 (Constraint 2), filming site 2 (Constraint 5) and special prop (Constraint 6), then the Footage-Constraint Set of the Footage 4
can be described as $F_{2}=\left\{r_{2}, r_{5}, r_{6}\right\}$
iii. Footage Matrix

If one column in $\boldsymbol{B}_{\mathrm{k}}$ is ' 1 ', then every Constraint in the same column has to be ' 1 '.
For example

$$
\begin{aligned}
& A_{r_{2}}=(0,1,1,1,0,1,1,1) \\
& A_{r_{5}}=(0,0,1,0,1,1,1,1) \\
& A_{r_{6}}=(0,0,1,0,1,0,1,0) \\
& B_{2}=(0,0,1,0,0,0,1,0)
\end{aligned}
$$

We can see clearly that if a column in $\boldsymbol{B}_{\mathrm{k}}$ is ' 1 ' then the corresponding value in $\boldsymbol{A}_{\mathrm{r} 1}, \boldsymbol{A}_{\mathrm{r} 5}$ and $\boldsymbol{A}_{\mathrm{r} 6}$ must be ' 1 ', which means that $b_{k h}=0$ if and only if $\prod_{t=1}^{q_{k}} a_{r_{k_{t} h}}=0$
iv. Filming Matrix

For example:

$$
C=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \rightarrow B_{1} \rightarrow_{2} \rightarrow B_{3}
$$

It is a 0-1 matrix formed by arranging the 7 Footage Matrices from top down.
v. Schedule Matrix

Every row represents a Footage, so one '1' has to be chosen from each row; every column represents a week and only one Footage can be shot in a week at most, so one at most ' 1 ' can be chose from one column.

For example

$$
E=(7,4,2,0,1,5,3,6)
$$

We can conclude that 8 weeks is needed to finish the film, as shown in Table 1 (Every element in E matches the 8 weeks one by one, so we can get the schedule as the following.)

week	1	2	3	4	5	6	7	8
Footage No.	7	4	2	0	1	5	3	6
Table 1								

In week 1 shoot Footage 7.
In week 2 shoots Footage 4.
In week 3 shoots Footage 2.
In week 4 shoots no Footage.
In week 5 shoots Footage 1.

In week 8 shoots Footage 6.

5.1.3 Examples of the Method

e.g.1:
i. Initial conditions

There are 3 movie stars
Star 1 is available in $1,2,3,5,6,7,8$
Star 2 is available in 2,3,4,6,7,8
Star 3 is available in 1,4,5,6,7,

And 2 filming sites

Outdoor scene is available in $1,2,3,5,7,8$
Indoor scene is available in $3,5,6,7,8$
And one special prop
Special prop 1 is available in $3,5,7$
And 7 Footages:
Footage 1 needs movie star 1, outdoor scene and special prop
Footage 2 needs movie star 2, indoor scene and special prop
Footage 3 needs movie star 1 and 2 and indoor scene
Footage 4 needs movie star 1 and 2 and outdoor scene
Footage 5 needs movie star 3 and indoor scene
Footage 6 needs movie star 1 and indoor scene
ii. Constraint Matrices

Movie star 1 (Constraint 1) $A_{r_{1}}=(1,1,1,0,1,1,1,1)$
Movie star 2(Constraint 2) $A_{r_{2}}=(0,1,1,1,0,1,1,1)$
Movie star 3(Constraint 3) $A_{r_{3}}=(1,0,0,1,1,1,1,0)$
Outdoor scene (Constraint 4) $A_{r_{4}}=(1,1,1,0,1,0,1,1)$
Indoor scene (Constraint 5) $A_{r_{5}}=(0,0,1,0,1,1,1,1)$
Special prop $1($ Constraint 6$) A_{r_{6}}=(0,0,1,0,1,0,1,0)$
iii. Footage-Constraint Sets

Footage 1: $F_{1}=\left\{r_{1}, r_{4}, r_{6}\right\}$
Footage 2: $F_{2}=\left\{r_{2}, r_{5}, r_{6}\right\}$
Footage 3: $F_{3}=\left\{r_{1}, r_{2}, r_{5}\right\}$
Footage 4: $F_{4}=\left\{r_{1}, r_{2}, r_{4}\right\}$
Footage 5: $F_{5}=\left\{r_{3}, r_{5}\right\}$
Footage 6: $F_{6}=\left\{r_{1}, r_{5}\right\}$
Footage 7: $F_{7}=\left\{r_{1}, r_{4}\right\}$
iv. Footage Matrices

Footage 1: $B_{1}=(0,0,1,0,1,0,1,0)$

Footage 2: $B_{2}=(0,0,1,0,0,0,1,0)$
Footage 3: $B_{3}=(0,0,1,0,0,1,1,1)$
Footage 4: $B_{4}=(0,1,1,0,0,0,1,1)$
Footage 5: $B_{5}=(0,0,0,0,1,1,1,0)$
Footage 6: $B_{6}=(0,0,1,0,1,1,1,1)$
Footage 7: $B_{7}=(1,1,1,0,1,0,1,1)$
v. Filming Matrix

$$
C=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \rightarrow \begin{aligned}
& \rightarrow B_{1} \\
& \rightarrow B_{2} \\
& \rightarrow B_{3} \\
& \rightarrow B_{4} \\
& \rightarrow B_{5} \\
& \rightarrow B_{7}
\end{aligned}
$$

vi. Schedule Matrix
$E=(7,4,2,0,1,5,3,6)$
This step is crucial, and the selection of Schedule Matrix will be described later. It will be illustrated later and the enumeration method and weighting method will be used for comparison.
vii. Time table

According to the Schedule Matrix, a time table can be obtained, as shown in Table 2

Week	1	2	3	4	5	6	7	8
Footage No.	7	4	2	0	1	5	3	6
Table 2								

So it takes 8 weeks to finish filming the complete movie.

5.1.4 Schedule Matrix

With the initial conditions, we can easily generated the Filming Matrix. Therefore, the key to our problem is how to generate the Schedule Matrix from the. Filming Matrix

For a Filming Matrix,

$$
C=\left(\begin{array}{ccc}
b_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{p 1} & \ldots & a_{p n}
\end{array}\right) \rightarrow B_{1} \rightarrow B_{k}
$$

Because there is only one 1(all Footages must be taken) on each row and at most one ' 1 ' on each column (at most one Footage is planned to be taken every week), when '1' once occurs in a row or column, we can eliminate the corresponding row and column.

To make the final schedule as short as possible, we may start with picking the element of ' 1 ' in the first column and eliminate the corresponding row or column and then repeat this process until the last row is crossed out. Finally we can obtain a schedule.
i. Enumeration Method.
e.g.2:

The Filming Matrix with 7 weeks and 4 Footages
$C=\left(\begin{array}{lllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0\end{array}\right) \rightarrow B_{1} \rightarrow B_{2}$

The first ' 1 'appears in the third and the forth row in first column, so we cross out the first column and the third row, and let $\boldsymbol{E}=(3 \ldots$

The matrix turns to:

Then we cross out the second row and the first column and let $\boldsymbol{E}=(3,2 \ldots$
The matrix turns to:

Then we cross out the first row and the first column and let $\boldsymbol{E}=(3,2,1 \ldots$
Here we cannot go any further. So we go back to the first column and try the second '1' (we have tried the first ' 1 ' before). We pick the fourth row in the first column

$$
C=\left(\begin{array}{lllllll}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow B_{1} \rightarrow B_{4}
$$

In the same way, we obtain

And we get $\boldsymbol{E}=(4,2,1,0,3)$
If the Schedule Matrix is still not satisfying, we can keep going using enumeration method until the best answer $\boldsymbol{E}=(4,3,1,2)$.is obtained.
ii. Weighting Method

If there are only a few Constraints, we can use the enumeration method till we get the best schedule. But when things get more complicated, the computation time will increase rapidly. Enumeration method may not help us to get the Schedule Matrix within a reasonable
time even with the help of computers. Thus, we designed a weighting method which could help us get an approximate answer faster.

We observed that a Footage that can be shot only in a particular week is more restrictive than a Footage that can be shot in any week. Thus it is reasonable to give it a higher priority in the scheduling. So we define the weight for each Footage as the inverse to the availability of the Footage:

$$
\lambda=\frac{\text { total number of weeks }}{\text { the number of '1's in a certain line }}
$$

, and rearrange the Filming Matrix with higher-weighted Footages at top and lower ones at bottom. In this way we can efficiently get a satisfying result.
e.g.3:

Take the example from e.g.1:

$$
C=\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \rightarrow B_{1}
$$

We can infer that

$$
\lambda\left(B_{1}\right)=\frac{8}{3}, \lambda\left(B_{2}\right)=\frac{8}{2}, \lambda\left(B_{3}\right)=\frac{8}{4}, \lambda\left(B_{4}\right)=\frac{8}{4}, \lambda\left(B_{5}\right)=\frac{8}{3}, \lambda\left(B_{6}\right)=\frac{8}{5}, \lambda\left(B_{7}\right)=\frac{8}{6}
$$

And thus $\lambda\left(B_{2}\right)>\lambda\left(B_{1}\right)=\lambda\left(B_{5}\right)>\lambda\left(B_{3}\right)=\lambda\left(B_{4}\right)>\lambda\left(B_{6}\right)>\lambda\left(B_{7}\right)$

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \text { (Week) } & & 1 & 2 & 4 & 5 & 6 \\
7 & 8
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow \ldots \rightarrow C(6)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right) \rightarrow C(7)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
\end{aligned}
$$

Respectively we can get that $e_{3}=2, e_{5}=1, \ldots, e_{1}=7$, then $E=(7,4,2,0,1,5,3,6)$
The result may not be optimal, but this method is more efficient than the enumeration method with answer close to optimal. What's more, this method can be easily implemented with the computer simulation.

5.2 Question 2

In Question 1, if one of the Constraints is changed (maybe caused by the injury of stars, the changing of the weather on the outdoor scene, and the damage of some special props.), the result will be affected to various extents. Now we are going to analyze how our model adjusts the schedule with such changes.

5.2.1 Analyzing Accidents and Adjusting

i. A movie star may get injured in an accident, which will cause him/her to rest for a period of time.
ii. Weather may get worse, such as possibility of raining rising, which will lower the availability of outdoor scenes.
iii. Special props may be damaged, which means replacement cannot be found immediately.

Accidents mentioned above affect further filming. We find that if we input the new Constraints to the model we established in Question 1 as new initial conditions, we will have the subsequent plan. (Actually it just generate a new schedule)
Rationality Explanation: Our model can quickly generate a reasonable schedule according to the actual situation.

For example: The Original Filming Matrix is the same as that in e.g. 2

$E=(4,3,1,2)$,
Assume when the first week of shooting was done, and an actor was caught in an accident, making Footage 1 and Footage 3 (both require the actor) impossible to be filmed in the next two weeks. We can list the new initial conditions.

$$
C^{\prime}=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \rightarrow B_{3} \rightarrow B_{1}, \rightarrow B_{2}
$$

Put these into the model and we know $E^{\prime}=(2,0,0,3,1)$
The schedule is showed in Table 3 below (The plan of the first week is the same as before)

Week	1	2	3	4	5	6
Footage No.	4	2	0	0	3	1
Table 3						

Originally it takes 4 weeks to complete the filming and now it's postponed to 6
weeks, as $E=(4,3,1,2)$ turn to $E_{2}=(4,2,0,0,3,1)$. Here, our model has given the solution.

5.3 Question 3

Since we consider movie stars, filming sites and props as the same type of Constraints, we can then define an importance index for a certain Constraint number of times the constraint is needed (in 20 footages)
importance index $=\frac{\text { average filming time }}{\text { the possibility the constraint can be filmed }}$

5.3.1 Example

e.g. 4:

Assume there's a movie that must meet the following conditions:
i. 20 Footages in total.
ii. A Large Footage needs 5 elements(3 movie stars, 1 filming site, 1 special prop)
iii. A Medium Footage needs 3 elements(2 movie stars, 1 filming site)
iv. A Small Footage needs 2 elements(1 movie stars, 1 filming site)
v. The proportion of Large, Medium and Small Footage is 2: 5: 3 (aka 4 Large Footages, 10 Medium Footages and 6 Small Footages.)
Because of the differences of movies are mostly represented by the proportion of indoor and outdoor scenes, so we studied 4 different types of films listed below.

Constraints	Availability	Movie Types	Proportions of indoor scene and outdoor scene
y_{1} (stars)	0.9	1	9: 1
y_{2}	0.8	2	6: 4
y_{3}	0.8	3	4: 6
z_{1} (indoor scene)	0.8	4	1:9
z_{2} (outdoor scene)	0.7		
w_{1} (props)	0.8		
w_{2}	0.4		

Through the formula given above we can get the table below:

Constraints		y_{1}	y_{2}	y_{3}	z_{1}	z_{2}	w_{1}	w_{2}
	Type 1	0.56	0.63	0.63	0.9	0.11	0.1	0.2
importance	Type 2	0.6	0.67	0.67	0.64	0.49	0.11	0.21
index	Type 3	0.59	0.67	0.67	0.42	0.72	0.11	0.21
	Type 4	0.51	0.57	0.57	0.09	0.93	0.09	0.18

Table 5.
We found that indoor scenes is a highly stable Constraint, so we took only movie stars, film scenes (z_{1} excluded) and special props into further consideration.

We observed that when the proportion of indoor scene and outdoor scene is relatively high, the importance index for movie stars is the highest. And when the proportion of indoor scene and outdoor scene is relatively low, on the other hand, the importance index of outdoor scene will become the highest.

In order to verify our conclusion, we used type 2 as an example, we take y_{3} (movie star), z_{2} (outdoor scene [weather]), w_{2} (special prop) (all with the highest importance index separately) as basis, and drew the following graph.

It's obvious that change in the availability of movie stars causes the biggest schedule altering compared to other Constraints. In order to further prove this point, we analyzed the range of these set of data.

We get:
Range (movie stars) $=1.35$, Range (special props) $=0.22$, Range (weather) $=0.53$
So the Constraint with the highest importance index affects the average filming time the most.

5.3.2 Conclusions

No matter it is a movie star, filming site or special prop, the Constraint with the highest importance index is the key factor, which varies depending on the different type of movies.

6 Analysis of the Model

6.1 Simulation in Real Situations

Through a program we wrote in Visual Basic (using weighting method, source code see in the Appendix), we can get a schedule that meets your requirements as long as you can provide a detailed list of availability of each Constraint including movie stars, filming sites, special props and the Constraints needed for every Footage.
P.S.: Considering that when the movie first begin filming, the setting up of indoor scene may not have been completed yet, so indoor scene is always unavailable in the first week.

Take e.g. 1 for example: Input these Constraints into the computer and we will get the data in Picture 1.

Constraint No.	Constraints	Available times	Footage No.	Requires
1	y_{1}	1-3,5-8	1	1,4,6
2	y_{2}	2-4,6-8	2	2,5,6
3	y_{3}	1,4-7	3	1,2,5
4	z_{1} (outdoor scene)	1-3,5,7-8	4	1,2,4
5	z_{2} (indoor scene)	3,5-8	5	3,5
6	w_{1}	3,5,7	6	1,5
			7	1,4

Picture 1
We can extract this table below

Week	1	2	3	4	5	6	7	8
Footage NO.	7	4	2	0	1	5	3	6

It takes at least 8 weeks to finish shooting.
So we have proven that the program is reliable and accurate.

6.2 Random Simulation

6.2.1 Simulation

In order to further validate the model's reliability and stability, we use the computer to conduct random simulations, in order to determine the average filming period of a
movie. To reduce the amount of calculation, we assume there are 3 movie stars, 2 film sites(indoor scene and outdoor scene), 2 special props.(Because the number of movie stars in each film won't be large, and film scenes are mainly indoor scenes and outdoor scenes, and the special prop usage is low)

In order to make the model more realistic, we use e.g. 4 in the simulation
i. 20 Footages in total.
ii. A Large Footage needs 5 elements(3 movie stars, 1 film scene, 1 special prop)
iii. A Medium Footage needs 3 elements(2 movie stars, 1 film scene)
iv. A Small Footage needs 2 elements(1 movie stars, 1 film scene)
v. The proportion of Large Footages, Medium Footages and Small Footages is 2: 5: 3(4 Large Footages, 10 Medium Footages and 6 Small Footages.)
Because proportions of indoor scene and outdoor scene among different types of films, we studied these four different types of films.

Constraints	Availability	Movie Types	the proportions of indoor and outdoor scene
y_{1}	0.9	1	9: 1
y_{2}	0.8	2	6: 4
y_{3}	0.8	3	4: 6
z_{1} (indoor scene)	0.8	4	1:9

Table 8
Then we can get the following graph (Each type simulated 5000 times)

Graph 2

	Type 1 90% indoor scene	Type 2 60% indoor scene	Type 3 40% indoor scene	Type 4 10\%indoor scene
Median	25	23	23	27
Mode	24	23	22	25
Average	25.01	23.53	23.81	27.58
Variance	8.32	6.77	8.53	16.77
Standard deviation	2.88	2.60	2.92	4.09
frequency of samples falling in the σ interval	0.6416	0.8397	0.7989	0.6902
frequency of samples falling in the 2 σ interval	0.9572	0.9563	0.9572	0.9578

Table 9

6.2.2 Conclusions

As for the findings in the chart, several points stand out
i. Frequency show a skewed normal distribution to average time, while the mean, median and mode are almost the same.
ii. For movies with a balanced ratio of indoor and outdoor scenes, results provided by this model are mostly below 25 weeks, the σ interval covers around 80% of the data and the variance is below 3 .
iii. For movies with extreme amount of indoor or outdoor scenes, results provided by this model are still below 28 weeks, the σ interval reaching 65% coverage of the data and the variance is around 4.

Analysis: When the movie is full of one kind of scene (indoor or outdoor), it's common for different Footages to conflict with each other, lengthening the average filming cycle. So the increment in avg. Filming cycle is reasonable.

Again, using tables and graphs, we have proved the efficiency and the stability of our model, with performance in extreme conditions also matching the reality.

7 Advantages, Disadvantages and Improvements

7.1 Advantages

i. Simpleness: This model is easy to use, you get immediate results as soon as you input all the Constraints.
ii. Accurateness: It can provide you with an accurate schedule.
iii. Reliability: Result provided by this model will not conflict with real situation.
iv. Operability: Using matrices, all computing became executable.
v．Flexibility：This model can adjust its output in time according to the reality．
vi．Stability：Results of the model do not vary greatly from each other．
vii．This model uses the concept of weight and is represented as the ability to recognize more important scenes and arrange them prior to others．
viii．This model considers movie stars，filming sites and special props as one single type of Constraints．

7．2 Disadvantages

i．To reduce the amount of calculation，we set the unit time as a week．Actually，the available time of movie stars，filming sites and the special props may be calculated by the days．
ii．To reduce the amount of calculation，what we get is only a relatively good solution， not always the best one．

7．3 Improvements

i．Setting the unit time as a day，or using subroutines for more detailed arrangements in each week will make the model more practical．
ii．When processing the Filming Matrix，if the weighting and rearranging process is repeated every time after the crossing－out of the matrix，then the output would become slightly better．

8 Reference

【1】 线性代数与解析几何［M］廉庆荣主编 高等教育出版社 2008
【2】 数学模型（第四版）［M］高等教育出版社 姜启源 2011
【3】 高等数学（第六版）［M］同济大学应用数学系编著 高等教育出版社 2007
【4】 Visual Basic 6.0 中文版编程方法详解［M］李鸿吉编著 科学出版社 2002
【5】 中学数学建模与赛题集锦（第二版）［M］上海市中学生数学知识应用竞赛组织委员会编著复旦大学出版社 2014

【6】 数学建模方法及其应用（第二版）［M］韩中庚编著 高等教育出版社 2009
【7】创意制片完全手册：从项目策划到营销发行［M］Maureen A．Ryan 编著 马瑞青译 2015
【8】 中级运筹学［M］胡知能主编 科学出版社 2008
【9】电影制作日程安排表1，［EB／OL］，
http：／／wenku．baidu．com／link？url＝S1k2i－LR7alEfuqc2KcAOZcFjcgOuwUgvDZ6cd＿n31jVNqS7 bE3FLxfW4IBoYfCppLy4CGASVwwjh7rSV46TNOF＿h＿5KBVrE5vd9T4DWpDO， xrb515437431，2011－11－05
【10】电影拍摄日程，［EB／OL］，
http：／／wenku．baidu．com／link？url＝Z6c－m8QO4－owUrfZXzykoOwSzBc9quST86thD7suBqPgv 8yKy990sbKzmZUnHa4ywUnh4exHaXOOddlkVPPmIHvAOOIYoBJEwMgYXJLiRVW，西瓜太瓜，2014－04－05

9 Appendix

Private actorcount, scenecount, tmin, tmax
Private actor () As Long, scene () As Long
Private A() As Integer, myschedule() As Integer
Private ac() As Integer, seq() As Integer
Private temp() As Integer
Private mycycle
Private testcount, testpass, tavg
Private outputstr As String
Private Sub addactor_Click()
On Error GoTo error1:
actorcount = actorcount + 1
mytag = InputBox("Tag this resource?", , "Resource" \& actorcount)
ReDim Preserve actor (mycycle, actorcount) As Long
Do
intervalstart $=\operatorname{Int}(\operatorname{Val}(\operatorname{InputBox}(m y t a g \& "$ is available from ... " \& Chr (10) \& "Enter nothing to finish input. ")))

If intervalstart $=0$ Then Exit Do
intervalend $=\operatorname{Int}(\operatorname{Val}(\operatorname{InputBox}($ mytag \& " is available till...")))
If intervalstart > intervalend Then GoTo error1
For $t=$ intervalstart To intervalend $\operatorname{actor}(\mathrm{t}$, actorcount) $=1$
Next t
Loop
listactor. Addltem "\#" \& actorcount \& " " \& mytag
Exit Sub
error1:
MsgBox "Error Encountered. Your data will not be saved. "
actorcount = actorcount - 1
ReDim Preserve actor (mycycle, actorcount) As Long
Exit Sub
End Sub
Private Sub addscene_Click()
On Error Resume Next
actorstr = ""
ReDim Preserve scene (1, scenecount + 1) As Long
scenecount $=$ scenecount +1
Do
actornum = Val (InputBox("This scene requires the presense of actor\#. . . " \& Chr (10) \& " (enter
ONE at one time, 0 to confirm)"))
If actornum > 0 Then
scene (0 , scenecount) $=$ scene (0 , scenecount) $+2^{\wedge}$ actornum
actorstr $=$ actorstr \& " " \& actornum
End If
Loop Until actornum <= 0
listscene. Addltem "Scene \#" \& scenecount \& ": " \& actorstr
End Sub
Private Sub cmdbegin_Click()
On Error GoTo error 1
'Initialization
Erase ac: Erase seq: useds = "": myshot = 0
ReDim A(1 To scenecount, 0 To mycycle) As Integer, myschedule(1 To mycycle) As Integer
ReDim temp (1 To scenecount, 1 To mycycle) As Integer
ReDim ac (0 To scenecount) As Integer
ReDim seq (O To scenecount) As Integer
Dim conflict As Integer
If listscene. ListCount $=0$ Then GoTo noscene
'build a 2D grid
For myscene = 1 To scenecount

```
    For t = 1 To mycycle
        actorsum = scene(0, myscene)
        ta = 1
        If ta = 1 Then
            For i = actorcount To 1 Step -1
                If actorsum \ 2 ^ i = 1 Then
                actorsum = actorsum - 2 ^ i
                ta = ta * actor (t, i)
                If ta = 0 Then A(myscene, t) = 0: Exit For
                If actorsum = 0 And ta = 1 Then A(myscene, t) = 1: temp(myscene, t) = 1:
ac(myscene) = ac(myscene) + 1: Exit For
                    End If
                Next i
        End If
            Next t
    Next myscene
    'arrange them in the sequence of avilability reversed order
    For i = 1 To scenecount
        For j = 1 To scenecount
        On Error Resume Next
        If ac(i) < ac (seq(j)) Or ac(seq(j)) = O Then
            For k = scenecount To j + 1 Step -1
                seq}(k)=\operatorname{seq}(k-1
            Next k
            seq(j) = i: Exit For
        End If
            Next j
    Next i
    For myseq = 1 To scenecount
        For i = 1 To mycycle
        A(myseq, i) = temp (seq(myseq), i)
        A (myseq, 0) = seq (myseq)
    Next i
    Next myseq
    'get final arrangements
    For t = 1 To mycycle
        For s = 1 To scenecount
        conflict = 0
        For i = 1 To mycycle
            If myschedule(i) = A(s, 0) Then conflict = 1: Exit For
        Next i
        If A(s, t) = 1 And conflict = 0 Then myschedule (t) = A (s, 0): myshot = myshot + 1: Exit
For
            Next s
    Next t
    |istresult. Clear
    For i = 1 To mycycle
        If myschedule(i) > 0 Then listresult.AddItem "Scene " & myschedule(i) & " @ T=" & i: tlast
= i
    Next i
    listresult.Addltem myshot & " of " & scenecount & " scenes shot on time."
    If scenecount - myshot = 0 Then
        listresult.Addltem "Finished " & mycycle - tlast & "T in advance."
        testpass = testpass + 1
        tavg = tavg + tlast
        outputstr = outputstr & Chr (10) & tlast
    Else: Iistresult.Addltem "Failed to finish on time."
    End If
    Exit Sub
error1:
```

```
    MsgBox "ERROR."
    Exit Sub
noscene:
    MsgBox "Generate a SCENE first."
    Exit Sub
End Sub
Private Sub cmdtest_Click()
'Initialize
    Dim testav(1 To 9) As Single
    For i = 1 To 9
        testav(i) = testset(i). Text
    Next i
    mycycle = testset(10). Text
    testcount = 0: testpass = 0: tavg = 0: outputstr = ""
'Repeating Tests
For myrepeat = 1 To InputBox("Repeat test for...", , 5000)
    testcount = testcount + 1
    Randomize
    lblcycle. Caption = "Filming Cycle: " & mycycle
    Erase actor: Erase scene
    ReDim actor (mycycle, 7) As Long
    ReDim scene(1, 20) As Long
    | istactor.Clear
    | istscene. Clear
    |istresult. Clear
    actorcount = 7
    scenecount = 20
    For i = 1 To 7
        |istactor.AddItem "Test Data"
        For t = 1 To mycycle
            If Rnd <= testav(i) Then actor(t, i) = 1
        Next t
    Next i
    actor(1, 4) = 0 'first day indoor is not avilable
    For s = 1 To 20
    |istscene.Addltem "Test Data"
    'decide the size of scene
    If s = 1 Then stype = 1
    If s = 5 Then stype = 2
    If s = 15 Then stype = 3
    'decide indoor/outdoor set
    If Rnd <= testav(8) Then nset = 4 Else nset = 5
    Select Case stype
    Case 1
        If Rnd <= testav(9) Then nprop = 6 Else nprop = 7
        scene(0, s) = 14 + 2 ^ nset + 2 ^ nprop
    Case 2
        Rnd
        Select Case Rnd
        Case Is <= 0.33
                nact1 = 1
                nact2 = 2
            Case Is <= 0.67
                nact1 = 1
                nact2 = 3
            Case Else
                nact1 = 2
                nact2 = 3
            End Select
            scene(0, s) = 2 ^ nact1 + 2 ^ nact2 + 2 ^ nset
```

Case 3
Rnd
Select Case Rnd
Case Is <= 0.33

$$
\text { nact1 }=1
$$

Case Is $<=0.67$ nact1 $=2$
Case Else nact1 $=3$
End Select
scene ($0, \mathrm{~s}$) $=2^{\wedge}$ nact1 $+2^{\wedge}$ nset
End Select
Next s
Call cmdbegin_Click
DoEvents
Next myrepeat
MsgBox "Tested " \& testcount \& " times in total. " \& testpass \& " (" \& Format (testpass / testcount,
"0.00\%") \& ") passed." \& Chr (10) \& "Avg Time Elapse: T=" \& tavg / testpass
Clipboard. Clear
Clipboard. SetText outputstr
End Sub
Private Sub delactor_Click()
On Error GoTo error1
ReDim Preserve actor (mycycle, actorcount - 1) As Long
actorcount = actorcount - 1
Iistactor. Removeltem (Iistactor. ListCount - 1)
Exit Sub
error1:
MsgBox "No Item to Delete."
Exit Sub
End Sub
Private Sub delscene_Click()
On Error GoTo error1
ReDim Preserve scene (1, scenecount - 1) As Long
scenecount = scenecount - 1
Iistscene. Removeltem (Iistscene. ListCount - 1)
Exit Sub
error1:
MsgBox "No Item to Delete."
Exit Sub
End Sub
Private Sub Form_Load ()
tmin $=9999$

Iblcycle. Caption = "Filming Cycle: " \& mycycle
End Sub
Private Sub Iblcycle_DbIClick()
myconfirm = MsgBox ("Changing your filming cycle will erase all data inputed. " \& Chr (10) \&
"Continue anyway?", vbYesNo)
If myconfirm $=$ vbYes Then
Erase actor: Erase scene: Erase A: Erase temp
I istactor. Clear
I istscene. Clear
 lblcycle. Caption = "Filming Cycle: " \& mycycle
End If
End Sub

